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Introduction

This work grew out of an attempt to better understand some of the concepts
behind the thesis ‘Monoidal equivalence of compact quantum groups’ by A.
De Rijdt. Motivated by remarks of A. Van Daele, I wanted to see if some of
the ideas and constructions treated there could be put into the framework
of algebraic quantum groups. This resulted in the paper [19]. Once this was
achieved, it was natural to extend our results to the level of locally compact
quantum groups, which became the paper [18]. The two parts of this thesis
can be seen as extended versions of these papers, provided with some more
motivation and introductory material.

I will now explain the main concepts involved in this thesis.

Quantum groups and Hopf algebras

The term ‘quantum group’ covers a broad range of many particular in-
stances, each with their own distinct flavor. As examples, we mention
Hopf algebras, quasi-Hopf algebras, quasi-triangular Hopf algebras, mul-
tiplier Hopf algebras, algebraic quantum groups, compact quantum groups,
locally compact quantum groups, ... The most widely known among these
would be the Hopf algebras, whose formal definition dates from the fifties.
Hopf’s name has been attached to these objects since cruder forms of their
structure appeared first, implicitly, in his paper [47], where the cohomology
groups of H-spaces (topological spaces with a multiplication map) are stud-
ied. We refer to [2] for a recent historical survey of the emergence of the
concept of a Hopf algebra. We further mention the books [81] and [1], which
treat the basic theory of Hopf algebras.

Geometrically, Hopf algebras are to be seen as function spaces on ‘quantum
affine group schemes’: they are unital, not necessarily commutative alge-
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2 Introduction

bras (over a field, or more generally, over a commutative ring), which in
addition carry structures called ‘comultiplication’, ‘counit’ and ‘antipode’.
These respectively play the role of ‘group multiplication’, ‘unit in the group’
and ‘taking the inverse of an element’. Although these classical analogies are
very helpful for intuition, one should not expect the passage to be without
surprises: for example, the operation of inversion will not be involutive for
a general Hopf algebral

In the eighties, the Leningrad school developed an important class of ex-
amples of quantum groups, which came forth naturally from their study
of quantum integrable systems. This class contained for example the g¢-
deformations of (the enveloping algebra of the Lie algebra of) semi-simple
Lie groups, the g being some complex number or formal parameter which
deforms the classical structure. At around the same time, S.L. Woronow-
icz introduced the notion of a compact quantum group ([103], [104]), which
was a non-commutative topological object (C*-algebra) containing a dense
Hopf algebra (with some further structure). This theory turned out to have
much in common with the beautiful classical theory of compact groups: one
is able to construct from the bare bones axiom system an analogue of the
Haar measure, one can generalize the Peter-Weyl representation theory,...
But there are also some new phenomena which appear. For example, be-
cause the antipode of the quantum group does not have to be involutive,
it is in some cases possible to assign canonically to a representation of the
quantum group a positive non-integer number, called quantum dimension,
which still has all the expected properties of a dimension function.

In [69], M. Rosso showed how the abstract theory of compact quantum
groups could be reconciled with the examples of the Leningrad school. Then
S. Wang, in [102], discovered examples of compact quantum groups (called
free compact quantum groups), which were of a different type than the ¢-
deformations, and which turned out to have deep connections with the the-
ory of free probability, as developed by Voiculescu. It were precisely these
free quantum groups which were the subject of [26]: there it was shown
that, at least for a certain class of the free quantum groups, there is still
a connection with the g-deformed Lie groups: one could find a monoidal
equivalence between a compact quantum group of this class and a particu-
lar g-deformed Lie group. We give some intuition concerning this notion of
monoidal equivalence in the following paragraphs.



Monoidal equivalence

Given a compact group, one can consider its category of finite dimensional
unitary representations. This is a highly structured category: each endo-
morphism space is a finite dimensional matrix algebra, one can multiply
representations (in a functorial way) by taking a tensor product (i.e., one
has a monoidal structure), one can ‘invert’ a representation by taking its
contragredient, and one can let representations trade places in a tensor prod-
uct representation by a canomnical symmetry. A very beautiful, deep and
powerful theorem of Doplicher and Roberts ([28]) has as a corollary, that
if one would be given such a category with all the mentioned structure,
one can reconstruct the compact group (see also the corresponding theorem
by Deligne concerning algebraic groups and more general finite-dimensional
representations, [24]).

When considering Hopf algebras or compact quantum groups, the repre-
sentation category (of the ‘underlying quantum group’) still has a lot of
structure: only the symmetry is missing, because of the non-commutativity
of the ‘function algebra’. Saying that two Hopf algebras or compact quan-
tum groups are monoidally equivalent ([71], resp. [10]), is then precisely
this notion of ‘having the ‘same’ (C*-)category with the ‘same’ monoidal
structure’ (we will give more rigorous definitions of ‘sameness’ in the first
chapter, but only in the non-*-setting). This provides then a very natu-
ral and strictly weaker notion of ‘equality’ between quantum groups. In
particular, the monoidal category alone is not sufficient to reconstruct the
quantum group. (In fact, the same is already true for finite groups: two
non-isomorphic finite groups can have the same monoidal category (in the
absence of a *-structure, see [35], in the presence of a *-structure, see [48]),
but then necessarily the corresponding symmetry transformation is differ-
ent.)

Galois objects

There is another, more concrete way to capture the notion of ‘being monoi-
dally equivalent’, which we will now discuss. Given two monoidally equiva-
lent Hopf algebras (or compact quantum groups), one has, by definition, a
monoidal equivalence between their categories of representations, but such
an equivalence need not be unique. It turns out that each equivalence itself
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has considerable structure: it is implemented by an algebra which carries
commuting actions by both quantum groups. The algebra and the actions
will satisfy some specific properties, which can be abstractly characterized.
One finds then that the datum of one of the quantum groups becomes (al-
most) superfluous: one can reconstruct it, together with its action, simply
given the algebra and the other quantum group (with its action). This pro-
vides one with a way of actually constructing new concrete quantum groups
from old ones, by finding such particular algebras.

As said, the action of the quantum group on such an algebra has to be of a
special type. It will be a particular instance of a Galois action of a quantum
group on a quantum space. These Galois actions have very nice geometrical
descriptions: for example, if one translates the defining conditions to the
setting of locally compact groups and spaces, one ends up with the notion
of a free and Cartan action'. A prime example of such an action is the one
on a principal fiber bundle by its structure group. But even in the purely
algebraic realm, these Galois actions naturally appear: if one considers a
finite Galois extension of fields, then the action of the automorphism group
of the extension on the big field will indeed be Galois in this sense. So this
notion crops up in different places of mathematics, and in fact, many gener-
alizations of this concept have already been considered (for an example and
some discussion concerning these generalizations, see [40]).

The peculiarity of the Galois actions which provide monoidal equivalences
between Hopf algebras, is that they are also transitive (or ergodic, depending
on the context). If one would translate this condition again to the classical,
geometrical setting, one would end up with something which, at first sight,
appears to be quite trivial: for if a group acts free and transitively on a
space, then this space must necessarily be set-isomorphic to the group, the
action then being given by (say) right translation. The important point to
make however is that the isomorphism is not a canonical one! For example,
there is a conceptual difference between the plane, considered as an affine
space, and the abelian group R?, which however acts on it in a free and
transitive way: in the plane, there is no distinguished origin. This is why,
even in the classical case of groups, spaces carrying a free and transitive

'For this terminology, see [64]. Briefly, ‘free and Cartan’ means that the group G acts
continuously on the space X, in such a way that X x G is homeomorphic (via the natural
map) to the equivalence relation induced on the space X, seen as a subset of X x X
with the trace topology. If moreover this equivalence relation is closed in X x X (or,
equivalently, if the orbit space X /G is Hausdorfl), one calls the action ‘free and proper’.



action have procured a special name for themselves, namely ‘torsors’. In
the quantum context, this difference becomes more than merely conceptual,
since ‘quantum torsors’ (i.e. the objects underlying a Galois object) can have
a different ‘function algebra’ than the quantum group itself.

The non-compact case

So far, we have only considered compact quantum spaces, which in alge-
bra terms means that all algebras concerned are unital. The main purpose
of this thesis is to extend the theory of (ergodic) Galois coactions to the
non-compact setting. We do this both in the purely algebraic setting, gen-
eralizing ‘well-behaving’ Hopf algebras to algebraic quantum groups, and in
the analytic setting, generalizing compact quantum groups to locally com-
pact quantum groups. We give some information about these structures.

Algebraic quantum groups were defined and studied by A. Van Daele in [93],
building upon the work done in [92]. In the latter article, a genuine gen-
eralization of Hopf algebras was introduced, the so-called ‘multiplier Hopf
algebras’. The main observation was that for a lot of the Hopf algebra the-
ory, one does not really need a unital underlying algebra. Algebraic quan-
tum groups are then a particular class of nicely behaving multiplier Hopf
algebras, namely those which have a non-trivial left-invariant functional (an
analogue of the Haar measure on a locally compact group). Their structure
is quite elaborate, one of the main features being that one has a duality
theory: from an algebraic quantum group, one can construct its dual, and
then the dual of this new object is canonically isomorphic to the original
object (Pontryagin duality).

On the other hand, locally compact quantum groups, as defined by J. Kuster-
mans and S. Vaes in [56], are purely analytic objects, living in the world
of C*-algebras (‘non-commutative topology’) and von Neumann algebras
(‘non-commutative measure theory’). They are a proper quantized version
of locally compact groups, as the locally compact quantum groups with com-
mutative ‘function algebra’ are in one-to-one correspondence with locally
compact groups. The theory is considered to be more or less an end-point
of a long search for the right notion of a ‘locally compact quantum group’.
Predecessing structures which should be mentioned, and which are still in-
teresting in their own right, are the Kac algebras (or ‘ring groups’ as they
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were originally called, see [50]), which are locally compact quantum groups
of a special type, and the multiplicative unitaries ([4], or, with extra regular-
ity conditions, [105]), which are more general than locally compact quantum
groups.

It turns out that Galois objects, either for algebraic or locally compact quan-
tum groups, inherit a lot of structure of the acting quantum group. A big
part of this thesis is devoted to proving that also the reconstruction theo-
rem, mentioned already in the context of Hopf algebras, continues to hold
in these technically more challenging situations. For these reasons, one can
consider (bi-)Galois objects as a kind of ‘hybrid quantum groups’.

We want to end this introduction by making a remark concerning an ap-
plication of ergodic Galois actions in the analytic setting, of which we do
not know if it has hitherto been considered explicitly (in the most general
situation) in the purely algebraic framework, namely the introduction of
projective representations for quantum groups.

Recall that a projective unitary representation of (say) a discrete abelian
group & is an embedding of the group into the algebra of unitary operators
on a (separable) Hilbert space ., which preserves the multiplication up
to a certain scalar, which will then give one a function Q : & x & — S!,
where S! is the circle, seen as complex numbers of modulus 1. Such a func-
tion € is called a (S'-valued) 2-cocycle. We note that associated to any
such 2-cocycle, there is an action of the compact dual ® of ® on a certain
cocycle-twisted convolution algebra Zo(®) of &, making £ (®) into a Ga-
lois object for &.

Another, more intrinsic definition of a projective representation, is that it is
a representation of the group into the group of *-automorphisms of B(¢),
the *-algebra of all bounded operators on 4. It turns out that with the
latter definition of ‘projective representation’, the construction mentioned
in the previous paragraph, which associates to a projective representation a
certain Galois object for the dual, still works in the quantum setting. How-
ever, there will in general be no associated 2-cocycle: while this notion still
makes sense, it will now only appear in special cases.



Outline of the thesis

The concrete structure of this thesis is as follows.

The first part concerns algebraic aspects, and we have attempted to make
it completely self-contained (maybe up to some minor remarks).

The first chapter begins with a quick review of the theory of Morita equi-
valence for unital algebras over a field. We present three alternative ap-
proaches, namely a categorical one, a concrete, symmetric one (by means
of linking algebras), and a concrete, asymmetric one (by means of ‘Morita
modules’), and we show how one can switch between these notions. In
the next section, we then put further structure on our algebras, replacing
them by Hopf algebras, and on our Morita equivalences, replacing them
by comonoidal Morita equivalences. One can again give differently flavored
definitions of the latter concept (using the notions of a linking weak Hopf
algebra and a Galois coobject), and we prove in detail the equivalence be-
tween these. In the third section, we then introduce the dual notion of a
monoidal co-Morita equivalence between Hopf algebras. Here we are rather
brief, since this theory has been developed in detail in a series of papers by
Schauenburg (see the third section of [76] for an overview). A fourth section
discusses some particular cases and examples.

The second chapter is also an introductory one. It begins with some com-
ments on and comparisons between the regularity conditions which can be
imposed on a non-unital algebra, and proceeds to explain the notion of
Morita equivalence for two different kinds of non-unital algebras. We then
introduce the notion of a multiplier Hopf algebra and of an algebraic quan-
tum group, and state (mostly without proof) the main results of [92] and
[93]. We also briefly state (with proof) a result which was obtained together
with A. Van Daele in [21], concerning the further structure of an algebraic
quantum group possessing a well-behaving *-structure. This allows for a sig-
nificant simplification of some results of [53] and [55]. We end with recalling
from [97] the definition of a Galois coaction for an algebraic quantum group.

The third chapter coincides more or less with the first section of our paper
[19]. We examine here the further structure of Galois coactions for which
the space of coinvariants coincides with the ground field (which are then
called Galois objects). This turns out to be as rich as the structure of an
algebraic quantum group: one has a notion of an antipode (squared), of
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invariant integrals, of modular automorphisms for them, and of a modular
element linking them. Moreover, one then has commutation relations which
are similar to those of algebraic quantum groups. We also comment on some
special cases, namely the situation of algebraic quantum groups of discrete
or compact type, and of algebraic quantum groups with a well-behaving *-
structure.

In the fourth chapter, we follow the second section of [19]. We define here
the notion of a linking algebraic quantum groupoid, and show that it is (es-
sentially) dual to the notion of a Galois object by some concrete ‘Pontryagin
duality’ functor. In particular, we can show then that the main result of [71]
holds in our setting: Galois objects are (essentially) the same as bi-Galois
objects, i.e., we can canonically construct from a Galois object a (possibly
different) algebraic quantum group, coacting on the same algebra, in such
a way that it also becomes a Galois object for this new algebraic quantum
group. We then consider again the situation where there is a *-structure
present, and show that in this case the new algebraic quantum group also
has a well-behaving *-structure. We end this chapter by considering a spe-
cific example.

The second part of our thesis concerns the analytic aspects of the theory of
Galois coactions and objects, and mainly uses the language of von Neumann
algebras. This part will undoubtedly be harder to follow for non-specialists,
since it is more technical, and is based upon a vaster body of results from
the literature.

In the fifth chapter, we recall some notions concerning von Neumann algebras
and the associated non-commutative integration theory. We also comment
on Morita theory for von Neumann algebras, and on Connes’ result concern-
ing the transportation of weights along a Morita equivalence. Most results
are taken from the first chapters of [84]. The seventh section, concerning the
basic construction of Jones for arbitrary operator valued weights, contains
results which are probably known to specialists, but for which we have found
no convenient reference in the literature.

In the sixth chapter, we introduce the notion of von Neumann and C*-
algebraic quantum groups ([56] and [57]), the associated theory of coactions
([85]), and the notion of quantum subgroups. The fourth section contains
some new results, and has to do with another viewpoint concerning some
aspects of the theory of integrable coactions, as treated in [85]. This section



will be important for the later chapters.

The seventh chapter is a reworking of part of our paper [20]. We begin with
defining Galois coactions and Galois objects, and then proceed to develop
the structure theory of the latter. These results are used in the third section
to ‘transport left invariant weights along monoidal correspondences’. This
allows us to reflect a von Neumann algebraic quantum group, along a Galois
object, to a new von Neumann algebraic quantum group. As in the purely
algebraic case, we then further compare the different implementations of
(co-)monoidal (co-)Morita equivalences (via bi-Galois objects or monoidal
linking algebras), and explicitly make the connection with the theory of
measured quantum groupoids ([59]). We end this chapter by considering
the associated C*-algebraic structure.

The eighth chapter deals with the interplay between Galois coactions and
quantum subgroups. First of all, we show that the property of being Galois
is preserved under restriction to a quantum subgroup (a process which keeps
the space which is acted upon the same). Next, we show that the same is
true, in the special case of Galois objects, for the process of reduction (which
also ‘reduces’ the space acted upon). Then, we show that one can induce
arbitrary coactions along a bi-Galois object, thus creating a coaction for
the reflected quantum group. We prove that under this induction process,
the property of being Galois is preserved. Finally, we show that one can
also induce a Galois object for some closed quantum subgroup to a Galois
object for the bigger quantum group, and that the reflected quantum group
along the original Galois object is then a closed quantum subgroup of the
reflection of the bigger quantum group along the induced Galois object.

The ninth and tenth chapter contain some more specialized results.

In the ninth chapter, we consider the special case of cleft Galois objects,
which are Galois objects constructed from a unitary 2-cocycle for the dual
quantum group. In this case, the von Neumann algebra underlying the dual
of the reflection along the Galois object coincides with the dual von Neu-
mann algebra of the original quantum group. This allows us to compare
the further structure of these duals in a more concrete way. We show for
example that the scaling groups of these quantum groups are automatically
cocycle equivalent (and in particular, induce the same one-parameter group
in the outer automorphism group of the von Neumann algebra). We also
give an easy criterion for a von Neumann algebraic quantum group to have
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only cleft Galois objects. In a second section, we then treat in the analytic
context a result by Schauenburg ([71]), which elucidates in particular the
nature of Galois objects for tensor products and Drinfel’d doubles.

The tenth chapter develops the notion of projective representations and
corepresentations for quantum groups, which are closely related to Galois
objects: just as, for ordinary groups, any projective representation comes
together with an associated unitary 2-cocycle, so every projective corepre-
sentation of a quantum group comes together with a Galois object. We
generalize (both to the quantum and projective situation) a theorem due
to Rieffel, which shows the equivalence between the square integrability of
a unitary group representation (on a Hilbert space J#) and the integra-
bility of its associated action on B(.#°). We then give a specific example
of an infinite-dimensional projective corepresentation of a compact quan-
tum group, and show that if one reflects the compact quantum group along
the Galois object associated to such a projective corepresentation, one will
obtain a von Neumann algebraic quantum group which is no longer compact.

The eleventh chapter develops to some extent the C*-algebraic theory associ-
ated to measured quantum groupoids ([59] and [30]) with a finite-dimensional
basis. It is included mainly to be able to give a unified account of the C*-
algebraic structure pertaining to both linking and co-linking von Neumann
algebraic quantum groupoids (as treated in the sixth section of the seventh
chapter). Most of the results are obtained by adapting the corresponding
proofs of the papers [54] and [105].

Concerning originality

Not all the results in this thesis are to be considered original, and not all
new results use ‘new techniques’. We therefore want to separate the wheat
from the chaff here.

We first state what we believe to be the major two (surprising) results of
this thesis: Theorem 7.3.7 (and its corollary 9.1.4), which states that a (gen-
eralized) cocycle twist of a locally compact quantum group is again a locally
compact quantum group, without imposing any further conditions, and the
example in section 10.3, which twists a compact quantum group into a non-
compact quantum group.
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The main new technical machinery developed to establish the mentioned
theorem is collected in the Chapters 5 and 6, sections 5.7 and 6.4, and
Chapter 7, sections 7.2 and 7.3. The material necessary to construct the
mentioned example, and to establish its properties, is developed in the first
part of chapter 9 and chapter 10.

The contents of the chapter 3 and 4, whilst having been important for me
to be able to develop the analytic theory, bear too much resemblance to the
theory developed in [92] and [93] to be considered really original. One of the
more surprising results, concerning the existence of an ‘antipode squared’
on a Galois object, was originally thought to be a novel result, unknown
in the Hopf algebraic theory, but I was later pointed by J. Bichon to the
papers [43] and [44] by C. Grunspan and the paper [75] by Schauenburg,
where one precisely considers such a notion (without actually calling it an
antipode squared). Nevertheless, our definition of this map is made in a
different way, which is easier to transport to the analytic setting.

The second and third section of the first chapter are also not to be consid-
ered (and are not intended to be) truly original: the second section owes
much to the papers [65] (which however works almost entirely in the cate-
gorical setting) and [82], whilst the results in the third section are a blend
of [71] and [8]. However, we hope at least to have brought some aspects of
the theory in a novel way. For example, we are unaware of a concrete con-
nection being made in the literature between the theory of Galois coobjects
and the theory of weak Hopf algebras. Also the connection between Galois
objects and weak Hopf algebras is only partially present in [8] (although the
definition of Hopf-Galois system in that paper essentially coincides with our
notion of a co-linking weak Hopf algebra).

Finally, the closing chapter 11 contains generalizations of the results of [54]
and [105]. Most of its proofs however can more or less be copied from these
papers, with minor modifications here and there.

We also want to comment on the originality of the concepts used. There are
two notions which we think deserve attention.

First of all, we have prominently used the notion of a linking structure wher-
ever possible. This seems not to be used much in the pure algebra setting
(where one likes to work more with the equivalent notion of a Morita con-
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text), but it is a familiar concept to operator algebraists (see e.g. [67] and
[39]) and groupoid theorists (see e.g. [17]). The benefit of using a linking
structure is that it has a similar structure as the objects which it links,
so that one obtains a more unified picture than when considering the con-
stituents of a linking structure separately. For example, our definition of
a co-linking weak Hopf algebra coincides with the (piecewise) definition of
a Hopf-Galois system of [10], but while the latter definition seems rather
complicated at first sight, our definition seems more natural, since it simply
concerns weak Hopf algebras with a distinguished projection.

Another notion which we believe to be new and of importance, is that of a
projective (co-)representation for a quantum group. Indeed: this could even
be seen as the real motivation for considering Galois objects in an analytic
setting, for there is a one-to-one correspondence between (outer equivalence
classes of ) coactions of a locally compact quantum group M on type I-factors
(i.e. von Neumann algebras of the form B(7#) for some Hilbert space J¢),
and (isomorphism classes of) Galois objects for its dual M (see Theorem
10.1.3).

Notations

This is a list of the notations which we will frequently use throughout the
thesis.

When S is a set, we denote by tg the identity map on the set S. More gen-
erally, when C is a category, we denote the identity morphism of an object
S by tg. The symbol o denotes the composition of maps (or morphisms),
but we mostly suppress it. If f is a map (or more generally a morphism),
we denote its domain by Z(f).

Throughout the first part of this thesis, k will denote an arbitrary field,
except at those places where it is specifically stated that we take kK = C. By
M, (k), we denote the algebra of n-by-n-matrices over k. If V, W are vector
spaces over k, we denote by V ® W the tensor product of V' and W over
k, and we write the elements of V © W as ZZ v; ® w;. We also write the
tensor product of linear maps = and y as x ®y. If A is an algebra, V a right
A-module and W a left A-module, we denote by Vg)W the balanced tensor

product, and by v ® w a simple tensor inside. When A, B are C*-algebras,
A
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we denote by A ® B their minimal tensor product. When M, N are von
min

Neumann algebras, we denote by M @ N their spatial tensor product. We

also denote the Hilbert space tensor product of two Hilbert spaces ¢ and

4 as  ®Y. Then if £ is a vector in JZ, we denote
le: X > HQRH 11—,
and if n is a vector in %', we denote
ry: > HRQH - Q.

When 7 = C, we identify 57 ® C and C® 7 with ¢, and we then denote
lz‘ = TZ‘ as we.

When V, W, Z are vector spaces, and
VW > Z: (v,w) > v-w
a bilinear map, we denote for A €V and B <€ W:

A-B::{Zvi-wi|v,~€A,wZ~EB}§Z.

When v € V, we then also write v - B := {v} - B.

By YXy,w, or simply ¥ when V' and W are clear from the context, we denote
the flip map between two vector spaces V and W:

Ev,w:V@W—>W®V:Zvi®wi—>2wi®vi.

We will also frequently use the leg numbering notation: if V; are vector
spaces and
w10V - V30V,

is a linear map, we denote for example by w12 the linear map
ul: VMOV > Va0 Vi0Vs,
and by w13 the linear map
Yo3u19Xie3 : VIOV O V2 > V3O V5 O V).

If u is already indexed, say u = w1, then we write uq 13 for u13. We also use
the same notations when working with Hilbert spaces instead of just vector
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spaces.

The scalar product of a Hilbert space will be anti-linear in the second ar-
gument. If 7, are Hilbert spaces, we denote by B(J, % ) the Banach
space of all bounded operators between . and %', by B(J) the algebra
of all bounded operators on 2, and by By(#) the algebra of all compact
operators. If £, e 7, we write

wey  B(A) = C:ax— (x,n).
If w is a unitary on 72, we will denote
Ad(u) : B(#) — B(A) : © — uzu®.

*®

If w is a functional on B(.%°) (or any other
w(ax*

-algebra), we denote w(x) =

~—

Unbounded positive operators on a Hilbert space 7 are always assumed to
be self-adjoint (in particular, closed and densily defined). When = € B(.%)
and A a positive operator, we call x a left (resp. right) multiplier of A if zA
(resp. Ax) is bounded. We then write xA (resp. Az) also for the closure of
this map.

Most of the time, we will only work with structures imposed on a vector
space, and we will then denote the whole structure by just the symbol for
this underlying vector space. This will not lead to any confusion, since we
will always use standardized symbols for the extra structure, indexed by the
underlying vector space. When we put two structures on the same vector
space, we will then use another symbol to denote the same vector space.
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Chapter 1

Morita theory for Hopf
algebras

This chapter is meant as an easily accessible introduction to the notions
of ‘comonoidal Morita equivalence’ and ‘monoidal co-Morita equivalence’
in the setting of Hopf algebras. The monoidal co-Morita theory is well-
developed in the literature (see [76], section 3 for a nice overview), whereas
the comonoidal Morita theory seems not to have been examined in full detail
(although the results are not very surprising, given that, at least formally,
they are dual to the ones of the monoidal co-Morita theory. See also [65], [82]
and section 4 of [78] for some discussion in quite different contexts). There-
fore, we spend some time on developing the latter theory (which is quite
convenient for introductory purposes, since it builds upon the better known
notion of Morita equivalence between unital algebras), while for the former
theory, we mostly just state the results, and refer to the literature for proofs.

1.1 Morita theory for algebras

1.1.1 Unital algebras

Definition 1.1.1. We call a couple (A, M) an associative k-algebra if A
1§ a mon-zero vector space over k equipped with a k-linear map

My:AQA—- A
which satisfies the following associativity relation:

MaA(Mg®ta) = Ma(ta®Ma)

17
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as maps AOAQOA — A.

We say that A has a unit or is unital when there exists an element 14 € A
such that
lyra=a=a-14 for all a € A.

Since associative k-algebras are the only types of algebras we will work with,
we will use the abbreviated form ‘algebra’ for them. Also, as mentioned at
the end of the introduction, we will from now on denote algebras by just the
symbol for the underlying vector space.

Multiplication in an algebra A is as usual just denoted by a dot, or no symbol
at all:
aa' =a-a = Ms(a®ad) for a,a’ € A.

Note that a unit in a unital algebra is unique, and hence we may talk about
the unit. When A is a unital algebra, we denote then by n4 the map

k— A:c—cly,
which we will call the unit map. Note then that 14 satisfies the identities

Mama®ta) =ta = Ma(ta®na),

where we have canonically identified Kk ® A and A ® k with A.

Definition 1.1.2. Let A be an algebra. The opposite algebra is the algebra
A% = (A, Mp 0¥y 4). We will write an element a of A as a’? when we
consider it as an element of A°P.

Definition 1.1.3. Let A and B be algebras. The tensor product algebra
AQ® B is the algebra (A® B, (Mas Q@ Mp)o (ta®XBaA®LB)).

It is easily checked that the tensor product of two algebras will be unital iff
both algebras are unital.

Definition 1.1.4. Let A and B be two algebras. A homomorphism between
A and B is a k-linear map f : A — B such that f(ad’) = f(a)f(a') for all
a,a’ € A. We also call a homomorphism a multiplicative (linear) map.

When A and B are unital algebras, we call a homomorphism f : A — B
unital if f(14) = 1p.
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When f is a bijective homomorphism between two algebras, we call it an iso-
morphism, and, when A = B, an automorphism. We call an automorphism
f of a unital algebra A inner if there exists an invertible element u € A such
that f(x) = uzu="t for all x € A.

We want to stress that when talking about homomorphisms between unital
algebras, we mean homomorphisms of the underlying algebras. When we

want them to preserve the unit, we explicitly call them wunital homomor-
phisms.

When A and B are algebras, we mean by an anti-multiplicative map (or anti-

homomorphism) from A to B the composition of a homomorphism from A
to B°P with the canonical vector space isomorphism B°P — B.

1.1.2 Morita equivalence

Definition 1.1.5. Let A be an algebra. A couple (V,my ) consisting of a
k-vector space V and a k-linear map my : A®V — V is called a left
A-module if the equality

my (Ma ®ty) =my(ta @my)
between the two stated maps AOQAOV — V holds.
We will again use -, or no symbol at all, to denote the action of A on V| i.e.

av =a-v:=my(a®uv).

Definition 1.1.6. Let A be an algebra, and V a left A-module.

e We call V unital if A-V = V.

o We call V faithful if a-v =0 for all ve V implies a = 0.

For a unital algebra A, a left module V' will be unital iff 14 - v = v for all
v € V. Another way of expressing this is

my(na®iy) = wy.
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Associated with a unital algebra A, there is a k-abelian category! A-Mod.
The objects of this category consist of unital left A-modules, while the mor-
phisms Mor(V, W) between two objects V' and W are the k-linear maps

z: VoW

which satisfy
xomy =mpy o (ta ®x).

We also call these morphisms the intertwiners between the two left A-
modules V' and W, and will denote Mor(V, W) as Hom4(V, W).

Closely related to the notion of module is that of a representation. If A
is a (unital) algebra, a (unital) left representation of A consists of a cou-
ple (V,7), where V' is a k-vector space and 7 is a (unital) homomorphism
A — Endg (V). Mostly, we will just write w for a left representation, and we
write Vi for the associated vector space. There is a one-to-one correspon-
dence between left A-modules and left representations of A in the following
way: to the left module V', we associate the left representation 7y such that
my(a)v = a - v, while to a left representation 7, we associate the left A-
module V; for which my; is the unique extension to A®V of the k-bilinear
map A xV — V : (a,v) - w(a)v. This correspondence clearly preserves
unitality. In the following, we will make no distinction between left modules
and left representations. Note in particular that an intertwiner between two
left representations 7; and 7y will then be a map z : Vi, — V., satisfying
mo(a)x = zm(a) for all a € A.

It is clear what the corresponding right notions are, and that right mod-
ules/representations of an algebra A correspond precisely to the left mod-
ules/representations of the opposite algebra A°P. We will denote right mod-
ules canonically by (V,ny), and right representations by the symbol 6. We
then also write

When A is a unital algebra, we denote the category of unital right A-modules
by Mod-A.

!Since category theory only plays a marginal réle in this thesis, we have decided not to
include the definitions of those terms which are not essential to understand what follows,
and refer to [61] for more information.
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Further, if A, D are two (unital) algebras, then a (unital) D-A-bimodule
consists of a vector space V' which is at the same time a (unital) left D-
module and a (unital) right A-module, in such a way that the two module
structures commute: for alv eV, a € A and d € D, we have

d-(v-a)=(d-v)-a.

Note that an algebra A is itself an A-A-bimodule in a natural way.

The following is the categorical definition of a Morita equivalence of algebras:

Definition 1.1.7. Two unital algebras A and D are called Morita equivalent
if there exists a k-additive equivalence between Mod-A and Mod-D. The
equivalence itself is called a Morita equivalence between A and D.

Remark: It will follow from Proposition 1.1.12 that to any Morita equiva-
lence, there corresponds a k-additive equivalence between A-Mod and D-
Mod, so there is no left/right asymmetry.

We will now find other, more concrete ways of capturing the notion of a
Morita equivalence.

We begin with the notion of a linking algebra.

Definition 1.1.8. A wunital linking algebra is a couple (E,e) consisting of
a unital algebra E together with an idempotent e € E, such that e and 1g—e
are full: FeE = FE and E(lgp —e)E = E.

When FE is a unital algebra, and e an idempotent in F, then as a vector
space, I is the direct sum of vector spaces F;;, where E;; = e;Fe; with
es = e and e; = 1g —e. We mostly write this direct sum as a 2-by-2 matrix:

Ey Er )
E =
( Ey Ex )’
since this intuitively captures the different multiplication rules between the
E;;. Note that, by restricting the multiplication of F, the Ej;; become unital
algebras with unit e;, while all £;; are unital F;;-F;;-bimodules. The condi-
tions for a couple (E, e), consisting of a unital algebra with an idempotent,

to be a unital linking algebra can then be written as E;; - Ej, = Ejy, for all
i,7,k € {1,2}.
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Definition 1.1.9. Let A and D be unital algebras. We call a quadruple
(E,e,®4,Pp) a linking algebra between A and D if (E, e) is a unital linking
algebra and A (;:A Es and D (i FEh1 are algebra isomorphisms.

When we want to talk about a linking algebra between two algebras, with-
out wanting to specify the algebras, we will talk simply of a linking algebra
between.

One should be careful with the notion of isomorphism between linking al-
gebras: two non-isomorphic linking algebras between can be isomorphic as
unital linking algebras. Although the notions of isomorphism for the two
concepts should be clear, we state them here explicitly.

Definition 1.1.10. Let (Ey,e) and (E2,€') be two unital linking algebras.
We call them isomorphic if there is an algebra isomorphism ® : E1 — FE»
such that ®(e) = €. If A and D are unital algebras, and (E,e, ®1,4,P1.p)
and (Ea, €', @3 4, P p) are linking algebras between A and D, we call them
isomorphic if there is an isomorphism ® : (E1,e) — (Eso, ') of unital linking
algebras, such that ® o @y 4 = ®3 4 and P o ®y p = P9 p.

Most of the time, we will identify two algebras A and D with their parts
inside their linking algebra (F, e) between, and suppress the symbols for the
identifications.

When (E, e) is a unital linking algebra, then of course it is a linking algebra
between the unital algebras E1; and Fao, by identity isomorphisms. There-
fore, whenever (F,e) is a linking algebra, we will also write E1; = D and
Eyy = A, whenever this is nicer to use. We then also write B for E19 and C
for Egl.

We now move on to the second notion which will capture the notion of
Morita equivalence in a more concrete way. In the following, if B is a right
A-module for some unital algebra A, we call the module generating if there
exist a; € Hom(Ba, Aa) and z; € B such that ), o;(z;) = 14. Note that
a generating module is automatically faithful.

Definition 1.1.11. Let A be a unital algebra. A right Morita A-module
B is a non-zero unital right A-module which is projective, finitely generated
and generating. If D is another algebra, we call (B, 7) a D-A-equivalence
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bimodule (or an equivalence bimodule between A and D), if B is a right
Morita A-module and 7 : D — Enda(Ba) is an isomorphism of algebras.

Even more concretely, one can say that B is a Morita A-module iff there ex-
ist positive integers m and n, such that A is isomorphic as a right A-module
to a submodule of B™ (which corresponds to the generating property), and
B is isomorphic to a submodule of A™ (which corresponds to the projectivity
and finite generation).

Again, there is a distinction to be made between isomorphisms of Morita
modules and isomorphisms of equivalence bimodules: the isomorphism clas-

ses of equivalence bimodules can be put into a (non-canonical) 1-1-correspondence
with couples consisting of an isomorphism class of a right Morita module,
together with an element of Out(D), which is the group of automorphisms

of D, divided out by the normal subgroup of inner automorphisms.

We also have analogous concepts in the left setting, and it is clear from
the next proposition that an equivalence bimodule is really a symmetric
concept: if B is a D-A-equivalence bimodule, then it is in particular a left
Morita D-module.

Proposition 1.1.12. Let A and D be unital algebras. There is a one-to-one
correspondence between isomorphism classes of

1. Morita equivalences between A and D,
2. linking algebras between A and D,

3. equivalence bimodules between A and D.

In particular, A and D are Morita equivalent iff there exists a linking algebra
between them, iff there exists an equivalence bimodule between them.

Proof. The one-to-one-correspondence between the objects in the first and
third item are well-known, while the one-to-one-correspondence between the
objects of the second and third item is easy to establish directly. We there-
fore only present the main steps in the proof, without going in too much
detail.

In the first part of the proof, we show that there are natural maps (1) —
(2) — (3) — (1). In the second part, we show that these maps, on equiva-
lence classes, are all bijections.
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Let (F,G,n,e) be a Morita equivalence between A and D, presented as a
pair of adjoint functors equipped with unit and counit natural isomorphisms
7, resp. €, where F' goes from Mod-A to Mod-D. One can construct from it
a D-A-equivalence bimodule as follows.

First, denote B = G(Dp), which is by definition a right A-module. It is
easy to see that we have a canonical isomorphism D — Endp(Dp) of alge-
bras, where an element d € D gets sent to the linear map [; which is left
multiplication with d. As G is an equivalence, we then also get a natural
isomorphism 7 : D — End 4(B4).

We have to prove some properties of B4 as a right A-module. As Dp is a
free right D-module, it is projective, and hence also B4 is projective. Sec-
ondly, Dp is a compact object, which means the following: whenever we
have an index set I, a collection M; of objects of Mod-D parametrized by I,
and a morphism f : Dp — @,.; M;, we can always find a finite set Iy < I
such that f factorizes as Dp — (—Die[o M; — @,c; M;. Since an equivalence
preserves this property, B4 is compact, and together with projectivity this
implies that B4 is finitely generated. Finally, Dp is also a generating ob-
ject: whenever M, N are two objects of Mod-D, and f a non-zero morphism
between them, we can find a morphism g : Dp — M such that fog # 0.
Since this property is preserved by an equivalence, B4 will be a generating
object, and from this one can deduce that B4 is a generating module.

(An alternative and rather distinct way to construct the equivalence bimod-
ule is as follows: let U4 and Up be the forgetful functors from Mod-A,
resp. Mod-D to the abelian category k-Mod of vector spaces over k. Denote
P := Hom(Up,Uy o G). It is easy to show that D can be identified with
2 := End(Up), sending d € D to the natural transformation ng which sat-
isfies (ng)r = m(d). Similarly, A can be identified with End(U4), and hence
with End(Uy4 o G), since G is an equivalence. By composition of natural
transformations, % is a Z-o/-bimodule, and hence also a D-A-bimodule.
One then shows that it is an equivalence bimodule. It will be isomorphic
to the previously constructed equivalence bimodule by sending n € % to
bn, = (np,)(1p). The proof of this last fact would be pretty similar to
(and follows easily from) a later argument, which shows that G is in fact
equivalent to the functor — %) B.)

We now want to create a linking algebra between A and D, directly from
a D-A-equivalence bimodule B. Put E = Ends((B® A)4). Let e € E be
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the projection map onto the Ag-summand. Then it is clear that we can
canonically identify (1 — e)E(1g — e) with D. We can also identify A
with eFe as an algebra, sending a to 0 @ l,, and we can identify B with
(1g — e)Ee by sending b to the linear map which acts as the zero map on
the B-summand, and acts as the linear map

Ay —>Bjg:a—b-a

on the A-summand. Denoting C' = Homu (B4, A4), we can also identify

eE(1g —e) with C, and then write £ in the form ( IC) i )

We should show that (E,e) is a unital linking algebra, which boils down to
proving B-C = D and C - B = A. But one easily checks that the former
property holds by projectivity and finite generation, and the latter by the
fact that B is generating.

Now let (E,e) be a linking algebra between A and D. Then by the A-D-
symmetry of E (interchanging e and (1g — €)), it is enough to prove that
there is a k-linear equivalence Mod-FE — Mod-A. Consider the restricting k-
linear functor Res : Mod-E — Mod-A which sends a right E-representation
(V,0v) to the right A-representation (6y(e)V, (6y)4), and the inducing k-
linear functor Ind : Mod-A — Mod-E which sends a right A-module V' to
the right F-module (V CA) cC V)=(V g)C’) @V, with E-module structure

(v'(?c' v)(i Z):z((u'%}(c’-d))—i—(v%c) (W' - (- b)) + (v-a)).

It is easily checked that this is a well-defined right F-module structure, and
that Ind extends to a k-linear functor.

We show that Res and Ind are quasi-inverses of each other. In fact, Resolnd
1s the identity functor. On the other hand, for V' a right E-module, define

ey : Ind(Res(V)) —>V:(v§>§)c V) > v-c+ 0.

Then V' — €y is easily seen to be a natural transformation. Moreover, it is
a natural isomorphism, the inverse being provided by

eyt 1V — Ind(Res(V)) : v — (Z(v - b;) (;?ci v-e),

%
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where b; € B and ¢; € C are such that ), b;-¢; = 1p.

It is not difficult to check that all preceding constructions descend to equi-
valence classes. We now show that, when applied successively, these con-
structions give back the same object, possibly up to isomorphism.

Let (F,G,n,¢) be a Morita equivalence between A and D. Let (F, G, 7, €)
be the Morita equivalence obtained by successively applying the previous
constructions. Then G assigns to a right D-module Vp the right A-module
V (B (Ba), where B4y = G(Dp). For v € Vp, denote by [, the morphism

ly,:Dp—>Vp:d—>uv-d.

Denote by ¢~>V the linear map

V®B-— G(Vp) 22%‘ ®b; — ZG(lUi)(bi)7

which is well-defined by k-linearity of G. Then by the functoriality of G’ and
the definition of the left D-module structure on B, ¢y descends to a map

oy - V%)B — G(Vp),

and it is easy to see that ¢ is then a natural transformation, since for
g € Homp(Vp, Wp), we have g ol, = Iy, by right D-linearity of g.

We want to show that ¢ is a natural equivalence. We first show that each
¢y is injective. Choose a finite set of b; € B which generate B as a left
D-module, which is possible since B4 is generating. Suppose v; € V are
such that ), G(l,,)(b;) = 0. Take an arbitrary ce C' = Homy (B4, A4) and
be B. Then

LGB (b)) = DG bi- (e )
3G (5 ¢) - b)

3Gl 000) )
=0

Hence G(; ly,.(t,.c)) = 0, and by the faithfulness of G, we get >, l,,..(3,.c) = 0-
So >;vi - (bi - ¢) = 0 for all c. But choosing ¢ € C' and b € B such that
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2. ¢ b =14, we get that

J
= 0.

Now we want to show that each ¢y is surjective. Since B4 is a generator,
a similar argument as before shows that G(V') is spanned as a vector space
by elements of the form f(b), where b € B and f € Hom4(Ba, G(Vp)). But
since B4 = G(Dp) and G is full, such an f must be of the form G(l,) for
some v € V. Hence ¢y is surjective, and ¢ is a natural equivalence.

Now let B be a D-A-equivalence bimodule. Then the associated functor
G : Mod-D — Mod-Ais V - VOB. So G(Dp) = D@OB = B asa
D D

D-A-bimodule.

Finally, let (E,e) be a linking algebra between A and D. Then the D-A-
bimodule constructed from this is B = (1g—e)Ee. Let (E', €’) be the linking

algebra between constructed from this. Define ® : F — E’ : ( Zl Z ) -

( ?(0) Z )’ where f(c) € C' = (1gr — €/)E’¢’ is defined uniquely by the

property that f(c)-b = c-b for all b€ B. Then it is easy to conclude that
® is an isomorphism of linking algebras between A and D.
O

Corollary 1.1.13. Let A and D be two unital algebras.

1. The algebras A and D are Morita equivalent iff A°P? and D°P are Morita
equivalent, and in this case, there is a one-to-one correspondence be-
tween isomorphism classes of their respective Morita equivalences.

2. Let B be an equivalence bimodule between A and D. Then B is a
finitely generated projective generating left D-module.
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3. Let E be a linking algebra between A and D. Then the natural maps
B %) C—->DandC %) B — A are isomorphisms of bimodules.

Proof. For the first item: if (E,e) is the linking algebra between A and D
associated to a Morita equivalence, then (E°P,e°P) is a linking algebra be-

tween A°P and D°P, giving the desired Morita equivalence between A°P and
D°P,

For the second item: since by the first item, B := e°P E°P(1gop — €P) is a
right D°P-Morita module, B will be a left D-Morita module.

Finally, the third item follows immediately from the fact that in a linking
algebra E between, one can find b;, b; € B and ¢;, c;. € C such that ) bic; =
1p and Zj c}b;- =14.

O]

Motivated by the correspondence established in Proposition 1.1.12, we in-
troduce the following terminology:

Definition 1.1.14. Let A be a unital algebra. Then we call A, with its
canonical A-bimodule structure, the identity equivalence bimodule, while we
call Ma(A) := A ©® My(k), with the canonical inclusions into the diagonal
corners, the identity linking algebra between.

When A and D are two unital algebras, and B a D-A-equivalence bimodule,
we call the dual C := Homu(Ba, Aa), with its natural A-D-bimodule struc-
ture, the inverse of B. When (E,e) is a linking algebra between A and D,
we call (E,(1g — e)) the inverse linking algebra between D and A.

When Ei1, Foo and Es3 are three unital algebras, and Fio an FEi1-FEao-
equivalence bimodule, Foz an Foo-Fs33-equivalence bimodule, we call Ey3 :=

FEio ® Es3 the composite Fi1-Fsz-equivalence bimodule of Ess and Eis.
Eao

When (Eh,e) is a linking algebra (between Ey1 and Eaz), and (Eg,€’) a
linking algebra (between Eao and Es3), we call

FE E E E
By B Eis 11 1,12 Fi12 82 2,12
E=| Ey FEyp FE |:= Eq 21 Es9 Es 19 ;

B3, E3 Ess E2,21E® Ei191 Eop2 Ess3
22
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together with its graded structure, the associated 3x3-linking algebra (be-
tween Ess, E9s and Ei1), and ( En B

the composite linking algebra
E31  Es3 ) P 7.9
(between Fs3 and FE11).

It is clear then that we can form a large groupoid with unital algebras as
its objects and isomorphism classes of equivalence bimodules as morphisms,
the composition being the one of the previous proposition (which is easily
seen to descend to isomorphism classes), and with the identity morphisms
being given by the (isomorphism class of the) identity equivalence bimod-
ules. The inverse of (the isomorphism class of) an equivalence bimodule is
then given by (the isomorphism class of) the inverse equivalence bimodule
(of a representative), by the third item of Corollary 1.1.13.

We end with the following trivial proposition.

Proposition 1.1.15. Let A be a unital algebra, B a right Morita A-module,
and D = Enda(Ba). Then D is a unital algebra, and By becomes a D-A-
equivalence bimodule. In particular, A and D are Morita equivalent.

The point is that given a right Morita A-module B, one constructs from it,
in a canonical way, a new algebra D, which is then Morita equivalent with
A. This process of constructing something new, given a special intermediate
(or hybrid) structure, will appear again and again in more complex settings.

1.2 Comonoidal Morita equivalence of Hopf alge-
bras

1.2.1 Hopf algebras and weak Hopf algebras

Definition 1.2.1. A coalgebra (A, A4) consists of a k-vector space A and

a k-linear map
Ay:A—> AGQA,

called the comultiplication or coproduct, such that
(Aa®ta)As = (ta®AQ)AH (coassociativity).
It is called counital if there exists a k-linear map

ea:A—k
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such that
(Ea®ta)Aa =14 =(La®ca)A4.

Such a map is then called a counit.

When doing calculations with the comultiplication, there is a convenient
notation at hand, called the Sweedler notation, similar to the ‘dot’-notation
replacing the map M4 in an algebra. Namely, if a € A, one writes

Aula) = ap) ®ag),

the latter being just a formal expression encoding a sum of elementary ten-
sors. This works of course for any map Ay : A > A® A. However, if A4 is
coassociative, we can then write

(Aa®ra)Aala) = aqym) ®aqye) ®ag)
unambiguously as
A (@) = ap) ®az) @ ag),
since it then equals the (only) other possible intepretation
(ta ® Aa)Aala) = ag) ® ap)a) @ ag)2)-

Remark that, just as the unit in a unital algebra is uniquely determined,
also a counit €4 of a counital coalgebra is uniquely determined, so we can
talk about the counit.

Definition 1.2.2. Let (A, A4) be a (counital) coalgebra. The opposite coal-
gebra (AP, A gcon) is the (counital) coalgebra (A,3X 4 40A4). We also write
AACDP as A(oqp'

Definition 1.2.3. A bialgebra? (A, M, Aa) consists of a unital algebra
structure (A, Ma) and a counital coalgebra structure (A, A4) on A, such
that A4 and €4 are unital homomorphisms of k-algebras.

Definition 1.2.4. A Hopf algebra (A, M4, A4) is a bialgebra for which
there exists a bijective map Sp : A — A, called an antipode, such that

MA(LA®SA)AA = NAEA = MA(SA@)LA)AA.

2The terminology unital counital bialgebra would be more precise, but we refrain from
using these extra specifications.
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In Sweedler notation, this defining property becomes
SA(a(l))a(g) =cala)ly = a(l)SA(a(g)).

We remark that such an antipode, when it exists, is unique, so we can
talk about the antipode. We also remark that one often does not ask that
S is bijective, but this will be the only case we are interested in. One
can show that the antipode S4 is automatically an anti-multiplicative anti-
comultiplicative map, the latter meaning that A j0S54 = (SA®S4)A%Y. The
bijectivity of the antipode also implies that (A, Ma, AS’) and (A, M3P, A ),
which we abbreviate again respectively as AP and A°P, are Hopf algebras,
with antipode Sgcop = Sgop = 5’21.

We now give a different characterization of Hopf algebras, which will reap-
pear in a generalized form from time to time.

Proposition 1.2.5. Let (A, M) be a unital algebra, and (A, A4) a coal-
gebra structure on A. Assume that A4 is a unital homomorphism. Then
(A, M4, A4) is a Hopf algebra iff the maps

Tin, AOA—>AQA: a®d — (a®1A)AA(a'),

Ton, : ADA>AQA:a®d — (1a®a)As(d),

which are called the Galois maps associated with A 4, are both bijections.
Remark: Since (A, A ) is a Hopf algebra iff (A°P, A 4) is a Hopf algebra, we
may also replace the maps 71 Ao, and T3 A, in the previous proposition by
the maps

Ta,2 : AOA—->AQA: a®ad — AA(a)(1A®a’),

Ta,1 :AOA—>AQA: a®ad — Ax(a)(d @14).
Proof. Let (A, M4, A4) be a Hopf algebra. Define

TfiA :A@A—)A@A:a@a'—>a5’,4(a'(l))®a'(2).

Then an easy computation shows that this is an inverse for 77 A,. For
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example,

Tl_,iA Tia,la®a) = Tl_,iA (aal(1) ® a/(2))

!/

= aagyySalajy)) @ ajy)
= aagy1ySalafye) ®a(y)
!

= a® EA(al(l))a(Q)
= a®d.

Similarly, the inverse of T5 A , is given as
Til N (a®ad) = a'Sgl(a(Q)) ® aqyy-

As for the converse statement, we refer to the proof of Lemma 1.2.18: simply
replace B and D there by A to obtain that A has a counit and an antipode.
The bijectivity of the antipode is not established there, but follows easily
by the following argument: since AP also has bijective Galois maps, it has
an antipode Sgcop. An easy argument shows that this is then an inverse for
S (see for example the end of Lemma 1.2.15).

We will need the following simple lemma at one point.

Lemma 1.2.6. Let A be a Hopf algebra, and I a right ideal of A. Suppose
Apa(I) S I®I. ThenI=0orl=A.

Proof. Consider the restriction of the map
Ta2: AOA—>AQA: a®d > As(a)(1a®d)

to I ®A. Then we can see it as a map 17 from I ® A to I ® A, since
Ax(I) € I ®I. Since the inverse of T , 2 is given as

Th) y(a®d) = aqy ® Sala)d,

T7 is an invertible map. Now since [ is a right ideal, we have in fact that the
range of T7 ends up in IO, hence we have I®I = I®A. Applying €5 to the
first leg, we see that either I = A, or e4(I) = 0. But since Au(I) € IO,
the latter means I = 0. O

We also introduce the notion of a weak bialgebra and weak Hopf algebra

([11)).
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Definition 1.2.7. A weak bialgebra (F, Mg, Ag) consists of a unital alge-
bra (E, Mg) and counital coalgebra (E,Ag), such that Ag is a homomor-
phism.

A weak bialgebra is called monoidal if eg is ‘weakly multiplicative’: for all
x,y,z € E, we have

ep(zyny)ee(ye)?) = ep(ryz) = cp(zy2))ee(Ya)?)-
A weak bialgebra is called comonoidal if the unit is ‘weakly comultiplicative’:

AP(p) = (Ap(lp)©16)(1s©Ap(ip))
= (1g®Agp(1E))(Ap(lp) ®@1E).
A weak Hopf algebra (E, Mg, Ag) is a monoidal and comonoidal weak bial-

gebra for which there exists an invertible map Sg : E — FE, called the
antipode, such that

Sp(r))z) = cpl@lz)l),

r(1)Se(r@2) = er(la)®)l2),
and

Se(z))r2)Se(2@3)) = SE(2).

Again, the antipode is then automatically unique, and moreover anti-multi-
plicative, even without the bijectivity assumption on Sg (see [11]).

Associated to any weak Hopf algebra E, there are two natural unital sub-
algebras, called the counital subalgebras, which are anti-isomorphic to each
other. One defines them as

Et = {:L' ek | AE(ac) = (x® 1E)AE(1E) = AE(lE)(ac® 1E)};
which is called the range or target subalgebra, and
ES = {:1: ek | AE(.%') = (1E @J})AE(lE) = AE(lE)(lE ®x)},

which is called the source subalgebra. (We note that in [11], E* is denoted
EL while E* is denoted E*.) The mentioned anti-isomorphism is then pro-
vided by the antipode Si. One further shows that E* and E! commute, that
Ag(lg) € E¥ ® E', and that E* is the first, E* the second leg of Ag(1g)
(meaning that every element of E¥ can be written as a linear combination
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of elements of the form (tp ® W)Ag(1E), where the w are linear functionals
on E, and similarly for E').

In the following, we will denote E! by the symbol L, and call it the object
algebra or basis of the weak Hopf algebra. We then denote the identity map
from L to E' by tg, and call it the target map, while we denote the map
L—-FE:z— Sgl(x) by sg, and call it the source map. We also introduce
the notations

E&:E—>E':z— ex(1nz)le)

and
& E— Bz —ep(xlg)ln.

Then & is left Et-linear and & is right FE*-linear.

We remark that weak Hopf algebras are to be seen as the non-commutative
versions of affine groupoid schemes on a finite set of objects. The moti-
vation for this is Proposition 2.11 of [11], which states that L is a separa-
ble, hence semi-simple algebra (this fact holds also in the case where F is
infinite-dimensional). In fact, there are several general definitions of ‘non-
commutative affine groupoid schemes’ in the literature, but while the weak
Hopf algebra theory can in all cases be seen as a ‘special case’, we should
remark however that they are in one sense more refined than most of these
general objects, in that distinct weak Hopf algebras can become equal when
passing to a more general theory. This has to do with the lack of a unique
antipode (or even lack of an antipode) in these general theories (by which, to
be complete, we mean: the Hopf algebroid theory of [60], the slightly more
general Hopf algebroid theory proposed in [13], or the still more general
x p-Hopf algebra theory of [72]). On the other hand, in the other theories,
one has the algebra L from the outset, provided with an embedding and
anti-embedding inside the quantum groupoid. Hence the weak Hopf algebra
picture does not see the actual embedding of L, which could be perturbed
by an automorphism of L.

1.2.2 Monoidal equivalence of categories

We will need the notion of a strict monoidal (k-additive) category, of a
(co)monoidal functor, and of a morphism between (co)monoidal functors.
We note that while the more general notion of a monoidal category is im-
portant in some situations (most notably for the quantization of semi-simple
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Lie groups), we will be able to get by without it.

Definition 1.2.8. A strict monoidal k-linear category (C,®c,1¢) consists
of a k-linear category C, a k-bilinear functor @ : C x C — C and an object
1c € C, such that

X Q¢ (Y®C Z) Z(X®CY) Rc Z vVX,Y,Z e Ob(C),
1e® X =X =X ®c 1¢ VX € 0b(C).

Definition 1.2.9. Let (C,®c¢,1¢) and (D,®p,1p) be two strict monoidal
categories.

A weak monoidal functor (F,u,v) from (C,®c,1¢) to (D,®p,1p) consists
of a k-additive functor F : C — D, together with a natural transformation
u:®po(F xF)— Fo®c and a morphism v : 1p — F(1¢), such that

uxgey,z(UX)y ®ptp(z)) = ux,yeez(tr(x) @D uy,z) (2-cocycle relation),

u1e,.x © (VD Lp(x)) = LE(X)s
ux1c © (trx) ®p V) = Lp(x),

for all X,Y,Z € Ob(C).

A weak comonoidal functor (F,u,v) from (C,®¢,1c) to (D,®p,1p) consists
of a k-additive functor F' : C — D, together with a natural transformation
u:Fo®c — ®po(F x F) and a morphism v : F(1¢) — 1p, such that

(uxy ®p tp(z))ux@cy,z = (Lr(x) ®D Uy, 2)Ux,Y®: 2

(v ®p tp(x)) © Ute, X = Lp(x)s

(tr(x)y®p V) o Ux 1. = LE(X)s
for all X,Y,Z € Ob(C).
A (co-)monoidal functor (F,u,v) between (C,®c,1c) and (D,®p,1p) is a

weak (co-)monoidal functor for which w is a natural isomorphism and v is
an isomorphism.
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Note that if (F,u,v) is a monoidal functor, then (F,u~!,v7™!) is a weak
comonoidal functor. Hence it is not really necessary to introduce separately
the notion of a ‘comonoidal functor’. However, we will still do so, since
sometimes the comonoidal structure is the most natural one to consider.

We can compose two monoidal functors (G,u/,v") and (F,u,v), resp. from
(D,®p, 1p) to (£,®e,1¢) and from (C,®c,1c) to (D, ®p,1p), and obtain
then a monoidal functor (G o F, G(u) o u;,(.) F() G(v) o) from (C,®c, 1¢)
to (5, @g, ]lg).

Definition 1.2.10. Let (C,®¢,1¢) and (D,®p,1p) be two strict monoidal
categories. A monoidal equivalence (F,u,v) from (C,®c,1c) to (D,®p,1p)
is a monoidal functor whose underlying functor F' is part of an equivalence
of categories.

One should be careful with this notion of monoidal equivalence, as it is not
really symmetric: one would like to know something about the monoidality
of the quasi-inverse of F' also. This is taken care of by the following lemma:

Lemma 1.2.11. ([70], 1.4.4) Let (F,u,v) be a monoidal equivalence between
two strict monoidal categories (C,®c, 1¢) and (D,®p,1p). Then there exists
a monoidal equivalence (G,u',v") from (D,®p,1p) to (C,Rc,1c), such that
G is a quasi-inverse for F with counit € : FG — 1vp and unit n : 1c —» GF,
and such that

Nxgey = Guxy) oupx) pvy© (x @cny)  for all X,Y € 0b(C),

(ex ®p ey) = exgpy © F(ux y) o ug(x),a(v) for all X, Y € Ob(D).
We do not give a proof of this, but only note how v’ is constructed:

i
Ux.y

G(X)®G(Y) G(X®Y) (1.1)
7]G(X)®G(Y)l TG(EXc@&y)
GF(G(X)® G(Y)g(? G(()FG) (X)® (FG)(Y))

YG(x),G(Y)

Since the composition of monoidal equivalences produces a monoidal equi-
valence, this then shows that we really obtain an equivalence relation on the
collection of strict monoidal categories.
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We note that for a monoidal equivalence, one does not have to ask that v
exists from the outset: it comes for free, in a canonical way (‘a unit is auto-
matically preserved under an algebra isomorphism’). Hence we may remove
it from the data.

We will also talk about comonoidal equivalences, although, again, they con-
tain the same information as monoidal equivalences.

Finally, we give the definition of a morphism between two monoidal functors:

Definition 1.2.12. Let (C,®c,1¢) and (D,®p,1p) be two strict monoidal
categories, and (F,u,v) and (F',u',v") two (weak) monoidal functors from
(C,®c,1c) to (D,®p,1p). Then a monoidal natural transformation ¢ from
(F,u,v) to (F',u',v") is a natural transformation ¢ : F — F' such that

U'X,y o (ox %) dy) = ¢X%3y oCUXY, for all X, Y € Ob(C),

and such that

$1p,0v ="
It is clear then what is meant by a monoidal natural isomorphism between
two monoidal functors.

1.2.3 Comonoidal Morita equivalence

We now associate to any weak Hopf algebra E a strict monoidal category.
Let V and W be two unital left F-modules. We can make a new left unital
E-module on the vector space Ag(1g) - (V ® W) by defining

z- (VW) = (1) v) @ (T(2) - W).

In fact, since (Sp®tg)Ag(1) is a ‘separating idempotent™ for L (cf. Propo-

sition 2.12 of [11]), we can also canonically identify Ag(1g) - (V @ W) with

V ® W as a vector space by the natural projection map, where V' is a right
L

L-module by the anti-representation my o sg, and W a left L-module by
mw o tg. By a good choice for the universal construction of the (balanced)
tensor product (cf. [73]), we may assume that this tensor product is strictly
associative. Now denoting for x € E by m(x) the map

m(r): L—>L:l— tgl(gt(xtE(l))),

3That is, writing (SE®te)Ap(l) =3, pi®q;, we have Y, pigs = 1p and X, Ipi ®q; =
>.pi®ql foralllelL
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one can check that 7 is a left representation of E on L, which moreover pro-
vides a unit for the tensor product ©, since we have for any left F-module V'
L

that VO L =V = LOV, with strict equality again when the balanced ten-
L L
sor product is appropriately defined. Then (E-Mod,®, ;) becomes a strict
L

monoidal category. When we regard left modules as left representations, we
will denote the tensor product by ;80 M is the ‘tensor product repre-

sentation’ associated with the representations 71 and m3. When F is in fact
an ordinary Hopf algebra A, we use the same notation, but simply delete
the symbol L everywhere, while m; then becomes the trivial representation
EA.

In the same way, we can turn the category of unital right modules of a weak
Hopf algebra E into a strict monoidal category (Mod-E,®, 7s).
L

We can now define the following natural concept.

Definition 1.2.13. Let A and D be two Hopf algebras. We call them
comonoidally Morita equivalent if the monoidal categories (Mod-A,®,e4)
and (Mod-D,®,ep) are comonoidally equivalent. We call a particular such
comonoidal equivalence a comonoidal Morita equivalence between the two
Hopf algebras.

The motivation for calling this a comonoidal equivalence will be given after
Proposition 1.2.17.

Our aim is again to recapture this notion in a more concrete way.

Definition 1.2.14. A linking weak Hopf algebra consists of a unital linking
algebra (E,e), where E is equipped with the structure of a weak Hopf algebra
i such a way that

Agp(e) =e®e
and

AE(IE - e) = (1E - 6) ®(1E - 6).

If A and D are two Hopf algebras, we call a quadruple (E,e,®4,®p) con-
sisting of a linking weak Hopf algebra (E,e) and comultiplication preserving

isomorphisms
Dy (A AQ) — (eEe, (AE)eEe)

®p: (D,Ap) = (1g —e)E(1g —e), (AE)|(1p—e)E(1p—e))
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a linking weak Hopf algebra between A and D.

We will apply the same conventions as for unital linking algebras, so we ac-
tually do not explicitly write down the identifying isomorphisms ® 4 and ®p.

As remarked at the end of the subsection on Hopf and weak Hopf algebras,
any weak Hopf algebra E comes together with another algebra L, embedded
in F in two ways. Since we have also remarked there that the counital sub-
algebras of F, i.e. the images of L under these embeddings, are exactly the
left and right legs of Ag(1g), it is easy to see that, in the case of a linking
weak Hopf algebra, we have L = E' = E® ~ k2, where the identification
sends the canonical basis vector e; of k2 to 1z—e, and the basis vector es to e.

This allows us to view linking weak Hopf algebras in the following way: they
can be seen as the ‘groupoid algebra’ pertaining to a quantum groupoid with
a classical object space consisting of two points, with A and D playing the
role of the group algebra of the endomorphism groups of the two points, and
with B and C playing the role of ‘arrow bimodules’ for the set of morphisms
between the two objects. Composition of morphisms then corresponds to
the algebra multiplications and bimodule structures.

Lemma 1.2.15. Let A and D be two Hopf algebras. Let (E,e) be a linking
algebra between the algebras underlying A and D, and suppose Ag is a
coassociative homomorphism E — E ® E, such that (Ag)a = Aa and
(Agp)p = Ap. Then (E,e) is a linking weak Hopf algebra between A and
D.

Proof. By the assumptions, we have that Ag(e) = e®e and Ag(lg —e) =
(1g—e)®(1g—e). We have to show that E possesses a counit and antipode.
We will write F = g i ) as before, and we denote by Ap and A¢ the

restrictions of Ag to resp. B and C.

We first note that the map
Tipng : DOB—->BOB:d®b— (d®1)Ap(b)

is a bijection. Indeed: suppose for example that b; € B and d; € D are such
that >, (d; ® 1)Ap(b;) = 0. Then for any c € C, we have

DUdi ® 1) Ap(bi)Ac(c) DUdi ® 1)Ap(bic)

3 3

= 0’
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so that >,d; ® bjc = 0 by Proposition 1.2.5. Since ¢ was arbitrary, and
C-B = A, we conclude },d; ® b; = 0. Hence T A, is injective. On the
other hand, choose b; € B and ¢; € C with ), ¢;b; = 14. Choose b,V € B
and write (b®b')Ac(ci) = 35;(ij®1p)Ap(pi;) for certain p;j, ¢;j € D. Then

bRV = Z(b@bl)AC(Ci)AB(bi)
= Z(Qij®1D)AB(pijbi)a

so that T7 A, is also surjective, hence bijective.

Then the beginning of the proof of Proposition 1.2.18 lets us conclude that
(B, Ap) is in fact a counital coalgebra, i.e. possesses a counit £p, and that

EB(db) = ED(d)é‘B(b).

By symmetry (interchanging e and 15 —e), we have that (C, A¢) is a couni-
tal coalgebra, with counit ec. Symmetry (interchanging the multiplica-
tion in E and the opposite multiplication), and the uniqueness of a counit,
also lets us conclude that ep(d - b-a) = ep(d)ep(b)ea(a), and then also
ec(a-c-d) =cepla)ec(c)ep(d) for d€ D,be B and a € A. A similar argu-
ment as the one showing that eg(db) = ep(d)ep(b) also let us conclude that
ep(bc) = eg(b)ec(c) and that € 4(ch) = ec(c)ep(b) for be B and ce C.

Put
5E(( d b )) = en(d) + 0(c) + e(b) + £a(a).

cC a

Then (E, Mg, Ag) is a comonoidal and monoidal weak bialgebra. In fact, it
is immediate that eg is a counit for Ag, since (E, Ag,eg) is just the direct
sum coalgebra of the coalgebras A, B,C' and D. The weak multiplicativ-
ity of eg follows easily from the bimodularity of its constituents, while the
weak comultiplicativity of Agp(1g) = (e®e)+(1g—e)®(1g—e) is immediate.

Now we show that (E, Mg, Ag) is a weak Hopf algebra, i.e., that there exists
an antipode Sg. Again, as in the proof of Proposition 1.2.18, we can con-
struct a map Sp : B — C = Homp(pB, pD) such that Sg(b(1))b2) = ep(b)
and b1)Sp(b)) = ep(b). By symmetry, we can also construct a map
Sc : C — B, satisfying similar conditions. Then one easily verifies that
Sg := Sp@®ScDSp®S 4 satisfies the conditions for an antipode on (E, Ag).
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We still have to show that Sg is bijective, or, which is the same, that Sp
and S¢ are bijective. By symmetry, it is enough to check this for Sg. But
by considering the comultiplication A%p on E, which satisfies the assump-
tions of the lemma with respect to AP and DP, we find a map C — B,
suggestively written as S]gl already, such that

S5 (be)bay = e8(b)1a.

Since it is known, by the general theory of weak Hopf algebras, that Sg is
anti-multiplicative, we see then, applying S, that for all b € B,

Sp(b1)) (SBS5 ) (b)) = e(b)1a.
Then

(SeSE() = b1)SB(be)(SSE") (b))
= bay - (e(bz)1a)
= b

A similar argument shows that (S5'Sp)(b) = b, so that Sz' is really the
inverse of Spg.
]

Remark: In fact, we do not even need to assume we have an underlying
linking algebra from the start. For let ' be an algebra, e a projection in F,
and Apg a coassociative homomorphism E — F®E such that Ag(e) = e®e
and Ag(lg —e) = (1g —e) ® (1g — €). Suppose further that A = eFe and
D = (1g —e)E(1g —e), equipped with the restriction of A, are Hopf alge-
bras. Suppose that, denoting B = (1 — e)Ee and C = eE(1g — e), either
B-Cor C-B # 0. Then, for example when B - C' is not zero, it is clearly
a right ideal of D, satisfying Ap(B-C) < (B-C)® (B - (). By Lemma
1.2.6, we then have B-C = D. Since then B = B-(C - B), also C' - B # 0,
and a similar argument gives that C - B = A. Hence F is a linking algebra
between A and D.

Now we look again at the one-sided, asymmetric situation.

Definition 1.2.16. Let D be a Hopf algebra. A left comonoidal Morita
D-module (B, Ap) consists of a non-zero left Morita D-module B together
with a coassociative left D-module map Ap : B — B® B, such that the map

D®B—->BO®B:d®b— (d®1)Ap(b)



42 Chapter 1. Morita theory for Hopf algebras

18 an isomorphism.

If A is another Hopf algebra, then we call a triple (B,Ap,0) consisting
of a left comonoidal Morita D-module (B,Ap) and an anti-isomorphism
0:A— Endp(pB) such that

Ap((0(a)) (b)) = (B(aq)) ®@0(a(2)))Ap(b)
a comonoidal equivalence bimodule between A and D.

In fact, this definition is formulated too strongly, as we will show in the next
subsection.

Remark: We note that the terminology of ‘comonoidal Morita D-module’
may not be too well-chosen: the bijectivity of the map, stated in the def-
inition, should really be seen as an extra condition on the object which
should be called a ‘comonoidal Morita D-module’. The point is that these
more general comonoidal Morita D-modules would then lead to equivalence
bimodules between a Hopf algebra and some ‘Hopf algebroid’. However,
since we will not investigate this generalization, we will stick with the above
terminology. We note that in the literature, one calls comonoidal Morita
modules ‘Galois coobjects’.

Proposition 1.2.17. Let A and D be Hopf algebras. There is a one-to-one
correspondence between isomorphism classes of

1. comonoidal Morita equivalences between A and D,
2. linking weak Hopf algebras between A and D, and
3. comonoidal equivalence bimodules between A and D.

In particular, A and D are comonoidally Morita equivalent iff there exists a
linking weak Hopf algebra between them, iff there exists a comonoidal equi-
valence bimodule between them.

Proof. Given either a comonoidal Morita equivalence, a linking weak Hopf
algebra or a comonoidal equivalence bimodule between A and D, we have
in particular respectively a Morita equivalence, unital linking algebra and
equivalence bimodule. By Proposition 1.1.12, we know how to pass from one
of these structures to the other. Our job is to show that the extra structure
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is carried along these correspondences.

Let (G,u) be a comonoidal Morita equivalence between D and A. Let
B = G(Dp) be the associated D-A-equivalence bimodule. We will give
it the structure of a comonoidal D-A-equivalence bimodule.

In (Mod-D,®,ep), we have the morphism
Ap:Dp— (DOD)p.
Denote by Ap the morphism
up.poG(Ap): B— BOB.
Then Ap is coassociative:

(LB®AB)AB = (LB®(’LLD7DOG(AD)))O(uD,DOG(AD))
= (tB®up,p)oup,pep ©G(tp ® Ap) o G(Ap)

naturality

2—COcy:Cle id (uD’D ® LB) ©UDED,D © G(AD ® LD) o G(AD)

= (AB @ LB)AB.
Now since Apg is a morphism of right A-modules, we must have
Ap(b-a) = Ap(b) - As(a).

Further, denoting, for d € D, by lg the linear map ‘left multiplication with
d’ in Endp(Dp), we also have

ApoG(ly) = uppoG(Ap)oGly)
= up,p © G(la.,, ®lag,,) o G(Ap)
= (G(ld(n) ® G(ld(z))) °Up,p© G(Ap).

naturality

Hence
Ap(d-b) = Ap(d) - Ap(b),

by definition of the left D-module structure on B.
We want to show that

D®B—->BO®B:d®b— (d®1)Ap(b)
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is bijective. Let {e;}ier be a basis of D. Denote by T A, the D-module
morphism

TLAD : (D@(DD) E)@DD g (D@D)Di

iel

(Z e; ® di %) @ di — Z(ez X 1)AD(di).
i i
We know by Proposition 1.2.5 that 71 A, is bijective. Now we can write

TLAD = @(lel ® 1) o AD?

i€l
where [, is again left multiplication with the element e;. So also

up,p o G(T1,Ap)

is bijective. But G preserves direct sums, so

uD,DOG(Tl,AD) = @(UD7DOG(ZQZ.®1)OG(AD))
= D(G(le;)®1) oup,p o G(Ap)),

which says exactly that

(2

DOB(=@B) > BOB: ) e;@bi(=@b) > > (e; ®1)Ap(b;)
is bijective. Hence B is a comonoidal D-A-equivalence bimodule.

(We also would like to present the construction of the coproduct in the case
where we identify B with £ = Hom(Up, Uy o G), where U denoted the
forgetful functor to the category of vector spaces over k. Denote for the mo-
ment (D, ®p) = (Mod-D,®) and (A, ®4) = (Mod-A,®). First remark that
we have a natural map Ag from B to Hom(Upo®p, UsoGo® 4), by putting
Agz(b)vw) := bvgpw for b e . By composing with u, and noting that U
intertwines the tensor products of A and D with the one of Mod-k, we can
see Ay as an element of Hom(%)o (Up x UD),C];)O (UaoG) x (Uygo@))). But

it is not difficult to show that this last space is isomorphic to B %, where
b® b corresponds to the natural transformation (b ® b')veg,w := by ® by,.
Hence A4 can be interpreted as a map & — £ %. One then argues that
it satisfies all needed properties. It is also easily seen to correspond exactly
to the comultiplication on B, simply by evaluating elements of & at D.)
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Next, suppose that B is a comonoidal D-A-equivalence bimodule. Let (E,e)
be the linking algebra between A and D associated to the underlying equi-
valence bimodule. We write again C' = (1g — e)Fe, and we identify it
with Homp(pB, pD) in the natural way, by right multiplication. Since

DGD BGOB
< CoOC AGA
also identify C'® C with Hompep((pep)(B © B), (pep)(D © D)), where we
again write the action of C ® C on B ® B as right multiplication.

> is a linking algebra between A® A and D ® D, we can

By definition of a comonoidal D-A-equivalence bimodule, we know that
DOB—->BOB:d®b— (d®1)Ap(b)
is bijective. But then also
BOD—->BOB:b®@d— (1Q0d)Ap(b)
is bijective, since
(1®d)Ap(b) = (Sp(du))dz) ®@dsy)Ap(b)
= (Sp(duy) ® 1)Ap(dz)b),

and

D@B—)D@Bd®b—>SD(d(1))®d(2)b
is bijective with

as inverse.

Now take ¢ € C, and write
. : BOB—->DOD: ¢c((d®1)AB(b)) = (d® 1)AD(b' C)'

By the definition of a comonoidal equivalence bimodule, this is well-defined.
Now for d’' € D, we trivially have

de((d'd®@1)Ap(b) = (d ®1)¢:((d®1)Ap(D)).
On the other hand, writing 1 ® d = SD(d( ))d(2) ® d(3), we also have

P (1®d)ApB(b)) = ¢((Sp(dy)dz) ®d(3)Ap(b))
= ¢.((Sp d(l))®1)AB(d(2) b))
(S’D(d(l))®1)AD(d() b-c)
(Sp(de1y)d2) ®ds)))Ap(b-c)
(1®d)Ap(b-c),

(
(
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which, by the previous paragraph, gives an equivalent defining equality for
¢c. This makes it clear that also

(1@ d'd)Ap(b)) = (1R d)p((1®d)Ap(D))

for d € D. By the discussion before the previous paragraph, this means
that we can write

d.(b@V) = (bRV)Ac(c),
for a uniquely determined element Ag(c) e C O C.

It is easily verified that A is coassociative: using Sweedler notation, we
have

([d®d ®d")AY (b)((1e ® Ac)Ac(c))

= dbycy @ d'baynyce)n) ® d b)) ce) )
dbgryeqy @ d (byeez) (1) @ d” (bzye(z))2)
d(be) 1y ® d'(be) 2y1y ® d” (be) 2)2)
d(be) 1)1y ® d'(be)(1y(2) @ d” (be) (2
d(bycn) 1y @ d'(byey) @) ® d" (bz)c)

= dbyn)cay) ® d'baye)cye) @ d'be)ce)

= (d®d@d)AY (1)(Ac ®1c)Ac(e)),

which is sufficient to conclude (tc @ Ac)Ac(c) = (Ac ®to)Ac(c), since el-

ements of the form (d@d’@d”)A(BQ)(b) span BOB® B, on which COCOC
acts faithfully by right multiplication.

We can now take the direct sum Ag of the Ap, Ao, Ap and A4, and see
this direct sum as a map ¥ — E ® E, by embedding D © D, C&OC,B&® B
and A® A in E® FE in the natural way. Then clearly, Ag is coassociative.
We want to show that it is also multiplicative.

Now A4 and Ap are multiplicative on resp. A and D, by definition. Also,
by definition,
Ap(d-b-a) = Ap(d) - Ap(b) - Aa(a),

and Ag(b)Ac(c) = Ap(be). We also have that
(d®1)Ap(b)Ac(c)A(t) = (d®1)Ap(be)Ap(t)
= (d®1)Ap(bct)
= (d®1)Ap(b)As(ct),
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hence Ac(c)Ap(b) = Aa(chb). Similarly, one proves that Ac(a-c-d) =
A(a)-Ac(c) - Ap(d). All this combined proves the multiplicativity of Apg.

By Lemma 1.2.15, (E, e) is a linking weak Hopf algebra between A and D.

Now suppose that (E,e) is a linking weak Hopf algebra between A and D.
By symmetry, we only have to construct a comonoidal equivalence from
Mod-FE to Mod-A. However, the restriction functor from Mod-E to Mod-A
is already strictly comonoidal, i.e. Res(V) ® Res(W) = Res(V kG; W), as is

easily verified. (Of course, we have to choose the proper (balanced) tensor
product of the vector spaces to have equality of the tensor product and the
restriction of the balanced tensor product, but this can easily be achieved).
It is also easily verified that the comonoidal structure u, obtained on the
associated equivalence — %) B from Mod-D to Mod-A, equals

ww (0@ (v @w)) = (b1) §v) @ (bz) Q).

We again have to show that these constructions, when applied successively,
give us back the original structure, up to isomorphism.

So suppose we start with a comonoidal Morita equivalence (F,u) between
(Mod-A,®,e4) and (Mod-D,®,ep), and let (G, u') be a comonoidal quasi-
inverse. In Proposition 1.1.12, we then constructed an isomorphism ¢ be-
tween the functors G and G = — %) B, with B = G(Dp). Now if we denote

the comonoidal structure that we get on G by @, we should show that ¢
changes @' into «’. By construction of ¢, this reduces to proving

(w0 G(logw)) (D) = G(lu) (b)) ® G (lw)(bea)),

where [ was the operation introduced in Proposition 1.1.12. Now it is easily
seen that lygw = (I, ® L) © Ap. By naturality of v/, we get that

“Q/,W o Glgw) = UIV,W o G(ly ®lw) o G(Ap)

(G(ly) ® G(lw)) o up p © G(Ap)
(G(l) ® G(lw)) © A,

by construction of Ag. This then proves the equality we were after.
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Starting with a comonoidal equivalence bimodule B between A and D, it is,
as in Proposition 1.1.12, more trivial to see that the constructions lead us
back to B itself.

Since the comultiplication A¢ on the C-part of a linking weak Hopf algebra
(E, e) is uniquely determined by the Ap and Ap-part, by the formula

((d®@1)Ap(b)Ac(e) = (d®1)Ap(be),

it also follows immediately by the proof of the corresponding statement in
Proposition 1.1.12 that applying our constructions successively on a linking
algebra between A and D, we are led back to an isomorphic linking algebra
between A and D.

O

We can now explain why we have chosen for the terminology of comonoidal
Morita equivalence. For it follows from the above proposition that if A and
D are two comonoidally Morita equivalent Hopf algebras, then the functorial
part of the comonoidal equivalence functor Mod-D — Mod-A is given by
the right balanced tensor product functor

V - VOB,
D

while the ‘comonoidal part’ is given by

(V@W)(BB—)(V(BB)@(W(BB),

(v®w) (B)b —> (’U%Db(l)) ® (w%b@))

But this last formula makes sense for any comonoidal D-A-bimodule, i.e. for
any D-A-bimodule B which is also a coalgebra, and whose comultiplication
is a bimodule map. So the comonoidal structure really seems the most nat-
ural one to consider in this context.

1.2.4 Reflecting across Morita module coalgebras

Just as for Morita modules, one can construct from a comonoidal Morita
module a new Hopf algebra, built on its endomorphism algebra. Apart from
this, the following proposition also shows, maybe more surprisingly, that the
definition we gave for a comonoidal Morita module is too strongly formu-
lated: one only needs the bijectivity statement in that definition, since the
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Morita property comes for free.

Proposition 1.2.18. Let D be a Hopf algebra, and B a left D-module.
Suppose B is a coalgebra, such that Ap(d-b) = Ap(d) - Ag(b), and such
that the map

DOB—->BO®B:d®b— (d®1)Ap(b)

is an isomorphism. Then B is a left comonoidal Morita D-module, and
there exists a Hopf algebra A which completes it to a comonoidal equiva-
lence bimodule between A and D. It is unique in the following sense: if Ay
18 another Hopf algebra, and B is also a comonoidal equivalence bimodule
between A1 and D, then there exists an isomorphism ® : A — A; of Hopf
algebras, such thatb-®(a) =b-a for alla€ A and b€ B.

Proof. We note first that also

D®B—->BOB:d®b— (1®d)Ag(b)
is an isomorphism, since

(1®d)Ap(b) = (Sp(d1)) ® 1)Ap(d(2)b).

(When we want to use the ensuing proof for Proposition 1.2.5, this was in
fact an extra assumption.)

We first show that B is a counital coalgebra. The argument is in fact
completely the same as the one of [92]. (To be able to reuse this proof for
another proposition, we will insert at places some steps which are redundant
for this particular proof.) Choose b € B. We define a map Ep(b) : B — B
as follows. For any b’ € B, write

V@b=>)(di®1)Ap(H)),

7

where the expression on the right is uniquely determined by assumption.
Then define
(Ep(b)(V) := D d; - 1.

We want to show that Eg(b) is in fact a scalar, i.e. of the form eg(b) - tp
for some ep(b) € k. Now by an easy argument, we also have that if ), ¥} ®
b; = Zj(dj ® 1)AB(Z)§), then Zz(EB(bl))(bi) = Zj d; - b;!. In particular,
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(EB(be)))(dbny) = db. Further, if ¥ @b = >(d; ® 1)Ap(b]), then also
b ® b(l) X d/b(g) = Zz(dz R1I® dl)(bgl(l) X b;I(Q) X b;,(:,))). Hence

(EB(b(l)))(b/) ® dlb(z) — Z dZ ;;/(1) ® d/ ;/(2)
= V' ®db,

from which we conclude that w(d'b2))Ep(b1y) = w(d'b)tp for any w € B*.
Since BO B = (1® D) - Ap(B), we conclude from this that Ep has indeed
range in k- tp, and we can write Ep(b) = ep(b)tp. The last identity for
FE'p then lets us conclude that € B(b(l))d' bea) = d'b, and since we had already
derived that db()ep(br)) = db earlier on, we conclude that ep is indeed a
counit for the coalgebra B.

We now show that ep satisifies eg(d - b) = ep(d)ep(b) (for which we will
not need that ep is multiplicative). Take b,b' € B and d € D. Write
4 ®b = ZZ dipi(l) ®pi(2), and write dz ®d = Zj d”d;](l) ® Cl;](Q) Then
V®@db =3, dij(di;pi) 1) ® (di;pi)(2), and by the counit property of ep and
ep, we find

ep(d- D)V = > didip;
]

= Yen(d)) dipi
= e’;‘D(d)EB(b)bl,
from which eg(d - b) = ep(d)ep(b) follows.

Now define a map Sp : B — Homg (B, D) by the defining property that

(SB(b2)))(dby) = ep(b)d.

In fact, since (Sp(b)))(d'dbny) = d'(Sp(b2)))(db(1)), we see that Sp has
range in C' := Homp(pB, pD). From now on, we let elements of C act on
the right of B, so in particular, we then obtain the formula by - SB(b(Q)) =
ep(b)1p. Then since (d - by - Sp(b2))) - bzy = d - b, we also obtain that
(- Sp(bay)) - b2y = ep(D)V for all b,b" € B. (We remark that at this point,
the proof of 1.2.5 would be completed.)
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Choose a fixed b € B with eg(b) = 1, and write Ag(b) = >}, b; ®,. Then
{(t}, Sp(b;))} gives us a finite projective basis of B, i.e. b = >, (b-Sg(b;)) - b
for all b € B. Hence pB is projective and finitely generated. On the other
hand, pB is a generating module since ), b; - Sp(b)) = 1p. So pB is a
left Morita D-module, and defining A as Endp(pB)°P, we get that B is a
D-A-equivalence bimodule.

Now we could proceed as in the proof of ‘3. implies 2.” for Proposition
1.2.17 to construct a comultiplication on C, but we will proceed by a dif-
ferent route. Namely, we first remark that Sp(db) = Sp(b)Sp(d) (using
again multiplications inside the associated linking algebra). Indeed: by the
modularity of eg with respect to ep, we have

d/d(l)b(l)SB(d(g)b(z)) = d,é‘B(db)
= d’ED(d)EB(b)
= d,d(l)eg(b)SD(d(g))
= d'dybySp(b)Sp(d(2),
from which Sp(db) = Sp(b)Sp(d) for all b € B and d € D easily follows.
Then, since for any c € C and b € B with ep(b) = 1, we have ¢ = Sp(b)) -

(be2yc), and since Sp is surjective on D, we have that Sp is in fact surjective
onto C. So we can define a comultiplication on C' by the formula

Ac = (Sp® Sp) o AP o S5,

and it is further immediate that Ac(cd) = Ac(c)Ap(d) force C and d € D,
using that Sp flips the comultiplication on D.

Since A ~ C%)B, and AQA =~ (COQO) D®D (B ® B) by the remarks made
©

in Proposition 1.2.17 and the third item of Corollary 7?7, we can define a
comultiplication A4 on A by putting

Axlc-b) == (cqy - bay) ® (cy - bay)-
Alternatively, A4 can be defined by the defining property that
(d®1)Ap(b)As(a) := (d®1)Ap(ba).

In any case, it is clear then that A 4 will be a coassociative unital homomor-
phism, and that Ac(c)Ap(b) = A4(cb) by definition.
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We now show that A has a counit and bijective antipode.

Define e :=¢epgo Sgl. Then ¢ will be a counit for (C, A¢), and moreover

ec(ed) = ec(c)ep(d). Together with the corresponding identity for ep and

the fact that we can identify A with C' ® B as an A-A-bimodule, we can
D

define amap €4 : A — k, uniquely determined by the property that € 4(cb) =
ec(c)ep(b). Moreover, since ep(bc) = ep(b)ec(c) by a similar argument as
the ones already used, we get that €4 is a homomorphism. It is also a counit
for A4: since ep(ba) = ep(b)ea(a) by definition, we have

b(ta®ea)(Bala)) = (B®ep)(Ap(ba))

= ba,
0 (ta®ea)Aa(a) = a. Similarly, (e4 ®ta)Aa(a) = a.

Applying our discussion up to now to (B, AZ"), which is a comonoidal left
D®°P-Morita module, we find a bijection B — C, whose inverse we will de-
note by Sc, such that b(Q)Sal(b(l)) = z’fB(b)lD and Sal(b(g))b(l) = 5B(b)1A-
We remark that the comultiplications on C' defined by these antipodes agree,
since we have the alternative expression (d®1)Ap(b)Ac(c) = (d®1)Ap(be)
for the comultiplication on C. Since Sc(ed) = Sp(d)Sc(c) and Sp(db) =
Sp(b)Sp(d), we can define, again using that C %) B~ A,

Sa:A— A:cb— Sp(b)Sc(e),

which is clearly a bijective map. We show that S4 satisfies the antipode
identity:

(cb)1)Sa((ch)(2)) cybaySaleeyb))

= ca)ba)Sa(ba))Sc(cz)
= ep(b)cySc(ce))

= ep(b)ec(c)la

= &‘A(Cb)lA.
Similarly, Sa((cb)(1))(cb)(2) = ca(cb)14, and we are done.
O

By the previous proposition, it is also easy to see that if A and D are Hopf
algebras, then an isomorphism class of comonoidal equivalence bimodules
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between A and D is completely determined by the isomorphism class of the
associated right comonoidal Morita A-module, up to a group-like (hence
necessarily invertible) element in D (compare Lemma 3.11 of [71]).

1.3 Monoidal co-Morita equivalence of Hopf alge-
bras

As said at the beginning of this chapter, the theory of ‘monoidal co-Morita
equivalences’ is, formally, completely dual to the theory that we have devel-
oped in the previous section. Therefore, we will not give complete proofs for
the statements in this section (moreover, most of them are in the literature),
although the statements can not be deduced from those in the previous sec-
tion (except in the finite-dimensional case).

Definition 1.3.1. Let A be a counital coalgebra. A left counital comodule
(V,yy) for A consists of a k-vector space V' and a linear map vy : 'V —
AQ®YV, such that

L (ta®@w)w = (Aa®uw)y,

2. (EA ®Lv)’}/\/ = Lly.
We will also write just the symbol for the underlying vector space V for a
comodule, and 7y for the associated comodule map, or vice versa, write -y
for a left counital comodule, and then write the associated vector space by
V,. We have the Sweedler notation for left counital comodules:

Y(v) = v(—1) @ V(0
(Aa®wy)(7(v)) = v—2) @ V(1) ®V(0)-

There is of course also the notion of a right counital comodule, which is then
a couple (V,ay) with ay : V — V © A, satisfying the obvious identities. If
« is a right counital comodule, we write

a(v) = vy @ V(1)

We can put a category structure on the collection of all left counital comod-
ules: if V and W are two left counital comodules, we define

Mor(V,W) ={z:V > W | (1®z)yy(v) = yw(av)}.
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In case A is in fact a Hopf algebra, we also have a monoidal structure: we
then define

YW oYW - V@W—>A®(V®W)’U®’w—> (’U(,l) -w(,l))®v(0)®w(0).

Together with the trivial comodule n4 : k > A®k, we get a strict monoidal
category (A—CoMod, -, 14) (when choosing the appropriate tensor product).

Again, we also have a strict monoidal category of right comodules (CoMod-
Aa T 77A)

Definition 1.3.2. Let A and D be two counital coalgebras. We call them
co-Morita equivalent (or Morita- Takeuchi equivalent) if their associated cat-
egories of right counital comodules are (k-linearly) equivalent, and call a
particular such equivalence a co-Morita equivalence.

When A and D are two Hopf algebras, we call them monoidally co-Morita
equivalent (or monoidally Morita-Takeuchi equivalent) if their associated
monoidal categories of right counital comodules are monoidally equivalent.
We call a particular such monoidal equivalence a monoidal co-Morita equi-
valence between A and D.

Remark: One can show that in both situations, one obtains precisely the
same notion if one only works with (CoMod™-4, -,74), the full (monoidal)
sub-category of finite-dimensional comodules.

Now we want to reformulate this notion again without using category theory.

Definition 1.3.3. Let A be a Hopf algebra, and (B, ap) a couple consisting
of a unital algebra B with a counital right A-comodule structure ap, such
that ap is a unital homomorphism. Then we call ap a right coaction of A
on B.

The following concepts, studied in detail by Schauenburg in [71], are dual
to the notion of ‘comonoidal Morita module’ and ‘monoidal equivalence bi-
module’.

Definition 1.3.4. Let ap be a right coaction of a Hopf algebra A on a unital
algebra B. We call B a right Galois object if

Tiap : BOB—>BOA:b@V — (b®1)ag(t),
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called a Galois map for ap, is a bijection.

Remark: Note that the bijectivity of T7 , is equivalent to the bijectivity of
the other Galois map

Top1: BOB—>BOA:b@V — apd)(V ®1),

by an easy argument. There is then no trouble or ambiguity in defining a
left Galois object.

Definition 1.3.5. Let A and D be Hopf algebras, B a unital algebra, ap
a right coaction of A on B, and vp a left coaction of D on B. We call
(B,vB,ap) a bi-Galois object if (B,vg) is a left, (B,ap) a right Galois
object, and ag and v commute, i.e.

(tp ®ap)yB = (YB®ta)ap.

Note that, in analogy with the previous section, we could also call a Galois
object a ‘monoidal co-Morita comodule’, and a bi-Galois object a ‘monoidal
equivalence bicomodule’.

The following is a main result of [71] (which holds also when the antipode
is not bijective, or, with some minor extra assumptions, when k is a general
unital ring).

Proposition 1.3.6. Let A and D be two Hopf algebras. Then there is a
one-to-one correspondence between isomorphism classes of

1. monoidal co-Morita equivalences between A and D, and

2. bi-Galois objects between A and D.

In particular, A and D are monoidally co-Morita equivalent iff there exists
a bi-Galois object between them.

There is also a notion dual to that of a linking weak Hopf algebra.

Definition 1.3.7. Let (E, {pi;}) be a couple consisting of a weak Hopf al-
gebra, together with a central decomposition {p;;} of the unit 1g into four
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non-trivial constituents (so pi1,pi2,pe1,p22 are four non-zero central ele-
ments, pij - Pkl = Oikdj1 Pij, and Z” pij = 1). We call (E,{pij}) a co-linking
weak Hopf algebra if
Ag(pi) = Zpij ® Djk-
J

When working with a co-linking weak Hopf algebra, we will again personalise
its constituents, writing p;; /' = E;; or also E11 = D, Eoy = C, Ei3 = B
and Fy = A. We also write

A1 Bij — Eg @ Eyj « 235 — (i @ pij) Ap(wi5),

which we personalise as A}, = Ap, Al, = 45, A}, = 40, A2, = ag,
A3, = ac, A} = fBp, Aly = Ba, and finally A3, = As. We call 34 and §p
the external comultiplication maps.

It is not hard to show, using the general theory of weak Hopf algebras, that
the counit of E vanishes on B and C. Denoting by €4 and e€p the restriction
of eg to A, resp. D, it is also easy to see that they provide counits on the
coalgebras A and D, and that A and D then become bialgebras. Further,
SE will restrict to maps Sy : A »> A, Sp: B - C, S¢ : C - B and
Sp : D — D, with S4 and Sp then providing antipodes for the bialgebras
A and D. Hence A and D are in fact Hopf algebras.

Definition 1.3.8. Let A and D be two Hopf algebras. We call a quadru-
ple (E,{pij},Pa,Pp) a co-linking weak Hopf algebra between A and D if
(E,{pi;}) is a co-linking weak Hopf algebra, and if the ® 4 and ®p are comul-
tiplication preserving isomorphisms A 4%4 (Fa2,A%,) and D q’):; (E11, AL).

Again, we mostly suppress the notation for the isomorphisms ¢4 and ®p
in the previous definition.

As for linking weak Hopf algebras, one can give a quasi-classical inter-
pretation of co-linking weak Hopf algebras, by considering them as non-
commutative function spaces on a quantum groupoid with a classical object
space consisting of two objects. The composition of arrows is now encoded
in the comultiplication of the co-linking weak Hopf algebra.

The following shows that there is no real difference between bi-Galois ob-
jects and co-linking weak Hopf algebras between.
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Proposition 1.3.9. Let A and D be two Hopf algebras. Then there is a
one-to-one correspondence between isomorphism classes of

1. co-linking weak Hopf algebras between A and D, and

2. bi-Galois objects between A and D.

Proof. Let (E,{pi;}) be a co-linking weak Hopf algebra between A and D.
Then from the coassociativity of Ag and its behavior with respect to the
pij, it follows that (tp ® Ag)ap = (ap ® ta)ap. Since £4 is the restriction
of eg to A, it is also easy to see that ap is counital, hence provides a right
coaction of A on B. Similarly, vp is a left coaction of D on B. The coasso-
ciativity of Ag also shows immediately that vp and ap commute.

Now write S4(a) = apy] ® apz]- Then the antipode identity on E gives that
b'boySc (bypy) @ by = V' ©b,

bSc(any)ap)o) ®apja) = b®a,

which lets us conclude that
Tiay :BOB—>BOA: bRV — b® l)aB(b’)
is a bijection. Similarly, one shows that
Tyy2:BOB—->DOB: bb — yp(b)(1QV)

is a bijection. Hence (B,vp,apg) is a bi-Galois object.

Now let (B,vB, ap) be a bi-Galois object. Denote
E=D®C@®BOA,

where C' = B°P. We give E the direct sum algebra structure. We denote
the units of D,C, B and A, seen as central orthogonal idempotents in F,
respectively by pi1,po1, p12 and paa. We will construct a comultiplication
Ag on E. Denote

BA(a) = Tl_’éB(l ®a),
and write 84(a) = a ® al@. Further write

Ba:A>CQOB:a— (a[l])°p®a[2],
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which we then write as 34(a) = aj;) @ afg). In a similar way, one constructs
a map

Op:D—BOC.

Asin [79], one can check that 54 and p are unital homomorphisms. Further
write

ac:C > AOC: b — 53 ba)) @b,

10 C = COD P — b @ Sp' (b)),
then a¢ is a left coaction by A and 7¢ a right coaction by D. We then

define a map
Ap:E—>FEQEF,

which is given on the different components of F as
Ag(a) = Ba(a) + Aafa),

Ag(b) =vB(b) +ap(b),
Ag(c) = ac(c) +vel(c),
Ag(d) = Ap(d) + Bp(d).

It is then immediate that Ag is a (non-unital) homomorphism, and that the
unit is weakly comultiplicative. One can also show that Ag is coassociative,
although we refrain from carrying out this computation in full here (one
can prove this piecewise, using coassociativity, the coaction property, the
commuting property between ap and a¢, and formulas as in Lemma 2.1.7
in [76]).

Now define eg(d@®c@®b®a) = ep(d) + c4(a). Then it is trivial to see that
€g is a counit for the coalgebra F, and that it is moreover weakly multipli-
cative. Hence F is in fact a monoidal and comonoidal weak bialgebra.

Now we use a result from [77], which is an analogue of Proposition 1.2.5 for
weak bialgebras: if E' is a monoidal and comonoidal weak bialgebra, then it
is a weak Hopf algebra (possibly with non-bijective antipode) iff

EQE - Ap(lp)(EOE) 2@y — Ap(*)(1p @Y)

is an isomorphism. (Alternatively, we could have established this propo-
sition specifically for our situation, with the same techniques already used
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extensively in the previous section.) Applied to the weak bialgebra already
obtained, this map splits into 8 maps

Eix © Ejp — Eij © Eji :

zij O Yk — A (zi5)(Lij ® yjk),
all of which should be isomorphisms. But 4 of them (for example, the ones
with & = 1) can be omitted by symmetry reasonings, and then 2 further

ones can be omitted by 1.2.5 and by the fact that ap is a Galois object.
Thus we only have to check if

BOA—->BOA:b®a— ap(h)(l®a)
is bijective, but this is true for any coaction, as is easily verified, and if
AOB—->COB:a®b— (4(a)(1®Db)

is bijective. But using again the formulas of Lemma 2.1.7 in [76], we find
that
COB—->A®B:c®b— (ta®Sc)(ve(e)(1®b)

is an inverse for this last map. The same reasoning, applied to E°P, shows
that the associated antipode Sg is in fact bijective.

Before proving that the two operations introduced so far are inverses of each
other, we first give some further comments about this antipode Sg. It is for
example easy to see, using once more the formulas of Lemma 2.1.7 in [76],
that S¢, which is Sg restricted to C, is simply C — B : b°°® — b. However,
the restriction Sp of Sg to B will be of the form b — 0p(b)°P, where 0p
is a certain automorphism of the algebra B. This automorphism 6p was
called the Grunspan map in Definition 3.5 of [75], and was actually defined
for quantum torsors (which are in one-to-one correspondence with our co-
linking weak Hopf algebras, but which have a slimmer axiom system). See
also the original paper [43]. We will see this automorphism appear again in
the third chapter, but we call it there the antipode squared associated to
a Galois object (for obvious reasons). Our definition of it will however be
given in a different way than in [75].

Now, to show that these two operations we introduced are inverses of each
other, we only have to show that a co-linking weak Hopf algebra (E, {p;;})
between A and D is completely determined by its associated bi-Galois object



60 Chapter 1. Morita theory for Hopf algebras

(B,vB,ap). But S¢ : C — B provides an anti-isomorphism between C' and
B, hence the algebra structure on C' is completely determined. Since

ApoSg = (SE®Sp)AY,
the comultiplication on the C-part is completely determined. Finally, since
AOB—->COB:a®b— [4(a)(1®Db)

has
COB—>AQ®B:c®b— (ta®Sc)(ve(c)(1®b)
as its inverse, B4, and by symmetry, Gp are completely determined. Hence

all structure involving C' is fixed, and we are done.
O

The following result, again due to Schauenburg ([71]), is the dual of Propo-
sition 1.2.18.

Proposition 1.3.10. Let A be a Hopf algebra, and let B be a right Galois
object for A. Then there exists a Hopf algebra D which completes it to a
bi-Galois object between A and D. It is unique in the following sense: if Dy
18 another Hopf algebra, and B is also a bi-Galois object between A and D,
then there exists an isomorphism ®p : D — D1 of Hopf algebras, such that

Yo, = (20 @ t)7p-

We now introduce the following generalization of the concept of a Galois
object.

Definition 1.3.11. Let A be a Hopf algebra, ag a right coaction of A on a
unital algebra B. The algebra of coinvariants for ap is the set of elements
b€ B for which ag(b) =b®1 (which are then called coinvariants).

It is easily seen that the set of coinvariants is really a unital subalgebra of B.

Definition 1.3.12. Let A be a Hopf algebra, ap a right coaction of A on a
unital algebra B. We call ap a Galois coaction if, denoting by F' the algebra
of coinvariants, a (generalized) Galois map

BOB—->BOA: bV — (b®1)ag(b)
F F

1s bijective.
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As for Galois objects, one can as well put the other Galois map

B?BHB@A&%HH@MMW@D
in the definition.

We note that many results concerning Galois objects also hold for Galois
coactions, with the main difference that the role of D is now played by a
‘Hopf algebroid’ (see also the remark following Definition 1.2.16).

We end with the following minor observation. First remark that one can
also define right coactions for weak Hopf algebras. One such definition goes
as follows. We can coact on the right on unital algebras B equipped with
a unital anti-homomorphism sp of L, the algebra of objects of the weak
Hopf algebra A, into B. Then such an algebra becomes an L-bimodule, by
composing sp with either left or right multiplication. Consider also A as an
L-bimodule by composing ¢ with multiplication to the left or right. Note
then that (B (2 AL, the set of L-central elements in (B %) A), becomes an

algebra under the obvious (factorwise) multiplication rule. Then a coaction

of A on B consists, apart from spg, of a unital homomorphism ap : B —

(B ® A)E, satisfying ag(sp(r)) = 15 ® sa(x), for x € L, and the natural
L L

coassociativity relation, which, in Sweedler notation, reads
b b by =0 b b
00 @ b)) @) = b0) © b)) O baye)

for all b € B (where we have also interpreted A4 as a map A — (A® A)F,
L

with L-bimodule structure as on B but using now the map s4, and where
we have also identified (B®A)® A with BO(A® A), although this actually
L 'L L L

requires some care), together with the counital assumption z(g) ® & (z(1)) =
L
x®14 for x € B. Note that by the last property, ap is automatically faithful.
L

For such a coaction, one can again define the algebra F' of coinvariants as
the set of those elements b € B for which ag(b) = b® 14. Then one can
L

form a Galois map
BOB—>BOA:b@b — bbjp @by
F L F L

We call the coaction Galois, when sp is faithful and this Galois map is an
isomorphism.
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Now take A = Mas(k), endowed with the weak Hopf algebra structure of
the groupoid algebra of the connected groupoid 2 with two points and four
arrows, that is, with its usual product structure and with the ‘trivial’ co-
multiplication Aa(e;;) = €;; ® ;5. Then we note that L is k2, embedded as
the commutative subalgebra of diagonal elements in Ms(k), and that s = ¢.
Now let E be a unital algebra equipped with a coaction by Ms(k). Then e =
sp(e2) provides an idempotent in E. Let E = ( g; gi ) = ( é g >
be the associated decomposition of E with respect to e. Note that if sg is
faithful, then e is not trivial, so neither A or D are the zero algebra. Fur-
ther, since ap has range in (E%Mg(k‘))k2, we see that for x;; € F;;, we have

ap(xi;) = x;j ®e;; for some xgj € E;; (being careful to use the right module
k?

structures!). But since ap is a coaction, and ag is faithful, it is easy to see
that in fact x;j = z;;. Hence a coaction by M»(k) is completely determined
by the idempotent e inside FE.

Let us now consider however what happens when the coaction is Galois.

Remark first that the algebra of coinvariants can easily be verified to be the

algebra D @ A inside E. Then £ (® FE can naturally be identified with
DA

(En %) Ey) (En % E9) (Er2 g) Es) (Er2 g) Ey)
(E2p %) Ey) (Exn % E9) ® (Ea2 g) Es) (Ea g) Ey)

On the other hand, E® Ms(k) is easily seen to coincide with E@® E, sending
k2
Zij ® e to x;; in the k-th component. The Galois map will then coin-
k.Q

cide exactly with the multiplication map of F, restricted to each summand.
From this, we conclude that ag will be a Galois coaction iff E is a unital
linking algebra. Another way of saying this is that unital linking algebras
are precisely strong 2-graded unital algebras.

It is then further easily noted that linking weak Hopf algebras are exactly
those weak linking Hopf algebras equipped with a Galois coaction of Ma(k),
in such a way that the coaction and the comultiplication commute. One
can even better appreciate the situation in the case of co-linking weak Hopf
algebras. Now we should look at the weak Hopf algebra k%, which is the
function algebra of the groupoid 2, where the comultiplication on the Dirac
function d;; (corresponding to the arrow from i to j) is given as (6;1 ® 1) +
(0i2 ® 02;). Then co-linking weak Hopf algebras E are precisely those weak
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Hopf algebras containing k% as a sub-weak Hopf algebra. This is of course
what one should expect for the dual situation (compare Proposition 7.1.4).

1.4 Special cases and examples

As mentioned already, in the finite-dimensional case there is a very easy di-
rect correspondence between Galois objects (monoidal co-Morita modules)
and Galois coobjects (comonoidal Morita modules): one simply has to con-
sider the vector space dual and transpose all structure. In more detail: let
A be a finite-dimensional Hopf algebra. Then its k-linear dual A* obtains a
Hopf algebra structure, by defining

(Max (w1 ®@w2))(a) = (w1 @ws)(Aa(a))

and

Apx(w)(a®d) = w(a-d),
where w1, ws,w € A*, and where we have identified (A ® A)* with A* ® A*.
Then ¢ 4 provides the unit of A*, evaluation in 14 the counit, and the trans-
pose of the antipode S4 the antipode S +. We denote this Hopf algebra by
ﬁ, and call it the Hopf algebra dual to A.

Now if (B,ap) is a right A-Galois object, we can transpose ap to obtain
a right A-module structure on B*, and we can transpose the multiplication
on B to obtain a comultiplication Agx on B*. It is then trivial to check
that B* is in fact a right A-module coalgebra, and even a right comonoidal
Morita module. We then denote it by B. Similarly, starting from a right
comonoidal Morita module, one produces a Galois object for the dual Hopf
algebra by considering the dual space.

However, in the finite-dimensional case, comonoidal Morita are in fact quite
trivial as a right A-module: they are simply a copy of A with its right module
structure by right multiplication. We put this in the form of a definition.

Definition 1.4.1. Let A be a Hopf algebra. A comonoidal right Morita
A-module B s called cleft when By = Aj4.

If B is a cleft comonoidal right Morita A-module, we can put Q = Ag(14),
where we have simply identified B4 with A4 for convenience. By the bijec-
tivity of the Galois map, €2 will be an invertible element of A® A. Since Ap
is coassociative, €2 will satisfy the 2-cocycle identity:

Q@14)(Aa®:4)(Q) = (L4 ®@N)((ta @ A4)(2)).
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Conversely, any 2-cocycle, i.e. any invertible element € in A ® A satisfying
this equality* is easily seen to give rise to a (cleft) comonoidal right Morita
A-module structure on A itself, by putting

Ap(a) := QA 4(a).

Two cleft comonoidal right Morita A-modules with associated 2-cocycles
)y and €y will then be isomorphic precisely when they are cohomologous,
that is, when there exists an invertible element u € A such that QoA 4(u) =
(u®u)Q;. Finally, it is also easy to see how the reflected Hopf algebra along
a cleft comonoidal right Morita A-module with associated 2-cocycle Q2 looks
like: this is simply the algebra A with the new coproduct

Ap(a) = QA(a)Q7L.

Dually, one also has the notion of cleft Galois objects: while we do not give
the precise definition, we mention that they can again be characterized in
terms of ‘2-cocycles’, which are now however functions w : A ® A — k,
satisfying among other conditions a natural 2-cocycle identity. It is easily
guessed that in case A is finite-dimensional, then w, interpreted as an ele-
ment of AQ® ﬁ, will be a 2-cocycle for A (as in the previous paragraph).

Apart from this quite general type of example, we can of course not ne-
glect to mention the Galois objects which inspired this name-giving, namely
the (finite) Galois field extensions. First note that associated to any fi-
nite group &, there corresponds a Hopf algebra in the following way. The
associated algebra is given by the set of all functions from & to k, with
pointwise addition, multiplication and scalar multiplication. Note then that
k(®) ? k(&) =~ k(® x &), in a natural way. Thus we can define a comul-

tiplication on k(®) by saying that Aye)(f), for f € k(®), should be the
function on & x & which sends (g, h) to f(gh). Then the associativity of &
shows that Ay (e) is coassociative. The counit is given by evaluation in the
unit element of &, while the antipode is given by (Se)(f))(9) = f(g™h).
Then actions of the group & on an algebra are in one-to-one correspondence
with coactions of the Hopf algebra k(®), by letting an action a of & on an
algebra B correspond to the coaction B — B ® k(®) which sends b € B to
2gew 0g(D) ® b4, Where 6, is the Dirac function in the point g € &.

“One often also asks the normalization condition (4 ® t4)Q = (14 ®€4)(Q) = 14, 50
to have eg = 4. However, this is merely a matter of convenience, since any 2-cocycle can
be perturbed to a normalized one.
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Now suppose k € K is a finite field extension. Then it is an easy exercise,
using basic Galois theory, to prove that this extension is Galois, i.e., k is
the fixed point algebra of all automorphisms of K leaving k element-wise
fixed, if and only if the associated coaction by the function algebra of the
automorphism group of £k € K on K, considered as a k-algebra, is Galois.

However, it should be mentioned that it is quite possible that a finite di-
mensional Hopf algebra over a field k£ acts by a Galois coaction a on a field
K 2 k, without this field extension being Galois! Such Hopf algebras will
then necessarily be commutative, but can of course not be of the form k(G)
for some group G (although they do become of this form when one amplifies
them with a big enough field extension of k). We refer to the article [42] for
more information.

Next, we address the natural question whether there exist non-cleft Galois
objects. This was in fact not clear at all from the beginning. The exis-
tence of these was established in [14], but the first concrete examples were
obtained by Bichon in [9]. Then in [10], examples were also found in the
C*-algebra setting, where there are even extra conditions on both the Hopf
algebra and the algebra acted upon, requiring them for example to have a
well-behaving *-structure, and a coaction respecting this *-structure. We
will treat some of the *-theory in the third chapter.

Finally, we end with the following remark, already alluded to in the intro-
duction. Let k be an algebraically closed field of characteristic 0, for example
C. Then any finite dimensional Hopf algebra A which is cocommutative, i.e.,
which satisfies Ay = A%, is of the form kG for some finite group G. Here
kG is the group algebra of GG, endowed with the Hopf algebra structure for
which Agg(g) = g®g. Let Q € kG ® kG be a 2-cocycle. Then in general,
there is no reason to expect that the Q-twisted Hopf algebra is again cocom-
mutative, and the extra requirement necessary for cocommutativity to hold
is easily derived: (Q°P)~1Q), where Q°P is Q with its legs interchanged, should
commute with all g®g. Is it possible to find a non-trivial 2-cocycle (i.e., not
cohomologous to the trivial 2-cocycle 1xc ® 1) satisfying this condition?
The surprising answer is that such groups and 2-cocycles do indeed exist.
Even more: the reflected Hopf algebra, which is then of the form kH for
some (unique) finite group H, does not have to be isomorphic to kG, i.e., H
does not have to be isomorphic to G. In categorical terms, this means that
H and G have almost completely identical representation categories, for the
categories can not be distinguished as monoidal categories. However, they
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can be distinguished as symmetric monoidal categories. By a symmetric
monoidal category, we mean a monoidal category (C,®¢,1¢) together with
an extra natural transformation o from ®c¢ to ®¢ o X¢ ¢, satisfying certain
relations. In case of the representation category of a finite group, this is
simply the natural transformation for which

UV7W:V@W—>W®V:2vi®wi—>2wi®vi.

Again, as already mentioned in the introduction, the representation category
of a finite group, as a symmetric monoidal category, completely remembers
the group, by an (easy) corollary to a theorem by Deligne (see [24], although
this particular result was in fact known much earlier already). For examples
of groups having monoidally equivalent representation categories, we refer to
[38], where a whole family of them is obtained, and to [48], where examples
are provided of finite groups having even the same monoidal C*-category of
unitary representations.



Chapter 2

Preliminaries on algebraic
quantum groups

In this chapter, we first discuss some notions concerning non-unital alge-
bras, and explain how one can develop Morita theory for them. Then we
introduce multiplier Hopf algebras ([92]), which are genuine generalizations
of Hopf algebras to the setting of non-unital algebras. After this, we recall
the main results concerning algebraic quantum groups ([93]), which are a
nice behaving subclass of the class of multiplier Hopf algebras, allowing for
example for a duality theory. We also spend some time on a result, obtained
in [21], concerning the further structure of algebraic quantum groups in pres-
ence of a well-behaving *-structure. We end with stating the definition of
a Galois coaction for an algebraic quantum group (which is taken from [97]).

Throughout this chapter, k is again an arbitrary fixed field, unless otherwise
stated.

2.1 Non-unital algebras

Definition 2.1.1. Let A be an algebra.
o We call A firm if
ARA—> A a®d — ad
A A
s a bijection.

67
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o We call A left (resp. right) non-degenerate when A has no non-zero
left (resp. right) zero multipliers, i.e. elements a € A satisfying aa’ = 0
for alla' € A (resp. d'a =0 for alla’ € A). We call A non-degenerate
when it is both left and right non-degenerate.

e We call A idempotent when A-A = A.

e We say that A has left (resp. right) local units, when for each a € A
there exists an element a’ € A such that

a-a=a (resp. a-a = a).
We say that A has local units when it has left and right local units.

o We say that A has a left (resp. right) unit when there exists an element
14 € A such that

la-a=a (resp. a-14 = a) for all a € A.

From (for example) Lemma 2.2 of [101], it follows that if A is an algebra
with left (resp. right) local units, then for each finite subset {a;} of A, one
can find a € A such that a-a; = a; (resp. a;-a = a;), and, from Corollary 2.5
of that paper, that if A is an algebra with left and right local units, then for
each finite subset {a;} of A, one can find a € A such that a-a; = a; = a; - a.
More trivially, if A has both a left and a right unit, then A is unital.

It is further immediate that a firm algebra is idempotent, that an algebra
which has left or right local units is firm, and that an algebra with local units
is non-degenerate. The notions ‘being non-degenerate and idempotent’ and
‘being firm’ are instances of nice regularity conditions which can be put onto
a non-unital algebra, but unfortunately, they are unrelated in general. We
present some examples to illustrate this fact.

The first two examples show that they are unrelated even in the commuta-
tive setting, and that they really ‘complement’ each other.

Example 2.1.2. Let A be the quotient of the semi-group algebra of (Q, +),
dividing out the generators corresponding to rational mumbers which are
strictly greater than 1. Then A is a firm algebra which is degenerate.
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Proof. Denote the generators of A as a k-vector space as o, where 0 < i < 1
is a rational number. Then the multiplication rule is given by k-linearly ex-
tending the defining relations o - o/ = ¢’ wheni+j <1,and a’-af =0
when ¢ + 5 > 1.

It is easy to check that a = o' satisfies a-a’ = 0 and @’ -a = 0 for all @’ € A,
so A is both left and right degenerate. Since o' = (a//?)? for any i, it is also
clear that A is idempotent.

Now let I be a finite subset of Q]0, 1], and suppose we have an I x I-indexed
family of elements k;; in k which satisfy >, ; kija' - o = 0. Denote
10:§-m1n(lu{z+j—1|z,jeIandz+] > 1}).

Then it is clear that ZZ j kijai_iﬂ -aJ is a well-defined sum in A, equal to 0.
Hence

Z k:l-jozi (;? ol = Z kijaio cat o (;? o’

27.] l’]

= @ kya'T" o)
Z’J

so A is firm.
O

Example 2.1.3. Let A be the quotient of the semi-group algebra of (QF, +),
dividing out the generators corresponding to rational numbers which are
greater or equal to 1. Then A is a mon-degenerate algebra which is not

firm.

Proof. Denote again the generators of A as a k-vector space as o', where
now 0 < ¢ < 1 is a rational number.

It is again easy to see that A is idempotent. To see that it is non-degenerate:
suppose that I is a finite subset of Qn]0,1[, that k; is an I-valued family
of elements of k, and that a = Y, k;a’ satisfies a - @’ = 0 for all o’ € A.
Then, since Q7 satisfies the cancelation law, this implies that for i € I, ei-
ther k; = 0 or i+ j > 1 for all j € Q;. But the latter implies that already
1 = 1. Hence a = 0, and A is non-degenerate.
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We show now that A is not firm, by proving that a2 ® a'/2 # 0, although
A

al’? . a2 = 0. Indeed: if al/? ® al’? were zero, then we can find a finite
A

subset I of Qn]0,1[ and an I x I x I-valued family of elements ks of k,
such that
041/2 ®a1/2 _ 2 kmt(aras ®at —a" ®Oc804t).
r,8,t
It is easily seen that we can assume all non-zero ks to satisfy r+s+1¢ = 1.
Let ip be a strictly positive rational number strictly smaller than 1/2 and
strictly smaller than any element of I. Then also

a1/2710 ® O41/2 _ Z krst(arfzoas ® ot — oo ® Ozsat),

7,8,

Applying the multiplication operator My, this would lead us to al=% = 0,
a contradiction.

O

The following gives an example of what can go wrong in a purely non-
commutative situation:

Cc C
0 0
of 2 by 2 matrices over C. Then A is firm but degenerate.

Example 2.1.4. Let A = as subalgebra of the C-algebra Ms(C)

Proof. The algebra A is firm, since ( (1) 8 ) is a left unit. But since A has

the left zero multiplier < 8 (1) ), it is degenerate.
O

Remark: We borrow the terminology of a firmness from [15] (where, in the
setting of rings, it is said to be due to Quillen). In [41], firm algebras are
also called regular algebras.

In the literature, especially the notion of a firm algebra has been studied,
for example in connection with Morita theory (cf. [41]). On the other
hand, in the theory of multiplier Hopf algebras (cf. [92]), the notion of non-
degeneracy is the main regularity condition. A priori, it is not clear what
could be the nicest possible, yet general enough regularity condition on a
non-unital algebra. But it turns out that the algebras underlying multiplier
Hopf algebras, which are more or less the only algebras we will encounter
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further on, have local units, so that a posteriori we needn’t really worry
about such questions concerning regularity, since having local units is al-
ready a strong condition.

It is not difficult to check that the tensor product algebra of two algebras
which satisfy one of the regularity conditions introduced (such as firmness,
non-degeneracy, being idempotent, having local units) is of the same type
(the proof to check preservation of firmness is the most involved, see [41]).

Definition 2.1.5. A *-algebra consists of a C-algebra A, equipped with an
anti-multiplicative, anti-linear' involution

*tA—> A:a—a”.

It is called positive, if a*a = 0 implies a = 0. It is called completely positive
if ¥, afa; = 0 implies a; = 0 for all i.

Note that a positive *-algebra is automatically non-degenerate.

When A and B are two *-algebras, also the tensor product algebra A ® B
is a *-algebra, by defining (a ® b)* := a* ® b* and extending anti-linearly.
Then, denoting with M,,(C) the n-by-n-matrices over C with its canonical
*-algebra structure, it is easy to see that A is a completely positive *-algebra
ifft A® M, (C) is positive for each n € N, whence the name. It is an open
problem if the tensor product algebra of two non-degenerate *-algebras is
again non-degenerate in the absence of sufficiently many hermitian positive
functionals on the two *-algebras.

It is further clear what is meant by a *-homomorphism between *-algebras.

Definition 2.1.6. Let A be an algebra. The multiplier algebra M(A) of A
is the unital subalgebra of Endy(A) ® Endi(A)°P, consisting of those (I,r°P)
for which

r(a)-a' =a-l(a), for all a,a’ € A.

It is convenient to write an element (I,7°P) of M(A) as m, and to write
l{a) =m-a and r(a) = a-m for a € A. Then we have a homomorphism

'an R-linear map f between C-vector spaces is called anti-linear when f(cx) = ¢f(x)
for ce C.
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of A into M(A), by sending a € A to (I4,7q"), where l,(a’) = a-a’ and
rqo(a’) = a’' - a for ' € A. When A is non-degenerate, this homomorphism is
faithful. In this case, we will identify A with its part inside M (A), and we
will then denote the unit of M(A) also by 14 (instead of 1p/(4))-

When A is a *-algebra, then the multiplier algebra M (A) for the underlying
algebra has a natural *-structure, making the natural homomorphism A —
M (A) a *-homomorphism: writing m = (I, ), we define m* = (I, 770 )
where

lmx(a) = (rm(a®))*
and

(@) = (I (a®))*.

Definition 2.1.7. Let A, B be non-degenerate algebras. We say that a ho-
momorphism f : A — M(B) has the unique extension property (or is
u.e. (uniquely extendable)) if there exists an idempotent p € M(B) such that

f(A)-B=pB,  B-f(A)=Bp.

We then say that f has the extension property with respect to p. We say
that f has the unique unital extension property (or is u.u.e. (unital uniquely
extendable)) if it has the unique extension property with respect to 1p.

The notion of ‘being u.u.e.” appears in the appendix of [92], where how-
ever it is called non-degeneracy of the map f. It is also shown there that
u.u.e. homomorphisms can be extended canonically to the multiplier alge-
bra. The same holds for the more general notion of an u.e. homomorphism.
First observe that if f is such a homomorphism, then it has the unique ex-
tension property with respect to a unique idempotent p € M(B). Then we
can define f(m) for m € M(A) to be the unique multiplier of B such that

f(m)(f(a)b) = f(ma)b
and
(bf(a))f(m) = bf (am)
for a € A and b € B, and further
f(m)((1p —p)b) = (b(1p —p))f(m) =0

for all b e B. It is easily seen that this extension f : M(A) — M(B) (which
should really be written M(f)) is then a homomorphism, sending 14 to p.
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Hence if the original f is in fact u.u.e., then this extension will be unital.
Note however that not every unital homomorphism f : M(A) — M(B)
necessarily restricts to an u.u.e. homomorphism A — M(B). Also remark
that not every f : A — B which has a unique unit-preserving extension
M(A) — M(B) necessarily has the unique unital extension property in our
sense (consider a non-idempotent non-degenerate algebra and its identity
map): one should rather regard the term ‘unital’ as referring to the range
algebra B as a left and right A-module.

Lemma 2.1.8. Let A, B,C be three non-degenerate algebras. Let f : A —
M(B) and g : B —» M(C) be u.e. homomorphisms, resp. with respect to
idempotents p € M(B) and g € M(C). Then go f: A — M(C) is u.e., with
respect to the idempotent g(p)q.

Proof. First note that g(p)q is an idempotent since ¢ = g(1p), hence com-
mutes with g(p). Then

(go )(A)-C = g(f(A)p)eC
= g(f(A)g(p)qC,

and similarly on the other side. O

Lemma 2.1.9. Let Ay, Ay, By and Bs be four non-degenerate algebras. Let
f: A - M(B;y) and g : Ay — M(Bs) be two u.e. homomorphisms, with
respect to the respective idempotents py € M(B1) and py € M(Bz). Then the
homomorphism

f@g . A1 @AQ — M(Bl)G)M(BQ) —> M(Bl @BQ)
s u.e. with respect to the idempotent p1 ® ps.

Proof. We have already remarked that the tensor product of non-degenerate
algebras is again non-degenerate. Then the rest of the lemma is trivial to
check:

(f(A1) ® f(A2))(B1 ® Ba) f(A1)B1 © f(A2)B
p1B1 ©p2Bo

(p1 ®p2) - (B1 © Ba),

and similarly on the other side.
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One can also define a notion of being (u.)u.e. for anti-multiplicative maps
A — M(B) for A, B non-degenerate algebras. Then it is immediately ver-
ified that the tensor product of (u.)u.e. anti-multiplicative maps is again
(u.)u.e. However, we can not miz an (u.)u.e. multiplicative with an anti-
multiplicative maps in this way: if f: Ay — M(Bj) is u.u.e. multiplicative,
and g : Ay —> M(B3) u.u.e. anti-multiplicative, there will in general be no
well-defined linear map A1 ® Ay —» M (B1 ® Bs). For example, consider the
case A; = By = A a non-degenerate algebra, B, = A°P, and f the identity
map, g the canonical map °P. Then if m € M(A® A), one can in general not
interpret it as an element in M (A® A°P), for then we would have to know if
also (1®a)m(a’®1)e A® A for all a,a’ € A, which is not always the case.
However, one can extend such a tensor product to a certain subalgebra of
M(A@® A°P).

Definition 2.1.10. Let A, B be non-degenerate algebras. We call restricted
multiplier tensor algebra for A and B the space M;2(A® B) € M(A® B)
of multipliers such that m(14®b), m(a®1p), (14®b)m and (a®1p)m are
elements of A® B, for alla€ A and be B.

More generally, if A; is a finite collection of n non-degenerate algebras, we
can introduce the space

Mill,im,---iltl;i21,i22,...,i2t2;...;isl,isg,...,ists (Al ® Az ®...0 An)

of multipliers m inside M(A; ® A2 ®...® A,), such that if we take, for any
fixed k, the tensor product algebra of all M(A;, ) for I # k and all 4;, , in
the proper order, then this algebra, multiplied to either side of the element
m,endsupin A1 QA4 ©...OA,.

In any case, it is easy to check now that if A; and B; are non-degenerate
algebras, and f : A1 — M(Bj) is an (u.)u.e. homomorphism and g : Ay —

M(B2) an (u.)u.e. anti-homomorphism, then f ® g can be extended to a
linear map M;.2(A; ® Ag) — M(B; ©® Bz) in a unique way.

2.2 Morita theory for non-unital algebras

Definition 2.2.1. Let A be an algebra, and V' a left A-module.

e We call V non-degenerate if a - v =0 for all a € A implies v = 0.
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o We call V firm when the map
AV - V:ia®v—a-v
A A

18 bijective.

It is easy to see that the notion of unitality is weaker than that of firmness.
Again, it is especially the notion of firmness which has been studied in the
categorical framework.

We now introduce the notion of a linking algebra in the framework of non-
unital algebras.

Definition 2.2.2. A linking algebra is a couple (E,e) consisting of an al-
gebra E, together with an idempotent e € M (E), such that e and (1p7(py —e)
are full: EeE = E and E(1yyp) —e)E = E.

We call a linking algebra firm, non-degenerate or ‘with local units’, whenever
the underlying algebra has this property.

A linking *-algebra is a linking algebra (E,e) such that E is a *-algebra and

e* =e.

Note that by its definition, the algebra underlying a linking algebra is auto-
matically idempotent.

We can still write E as a direct sum ZC—BEZ']-, and we will also continue to
write this direct sum in matrix form and its constituents by letters when
convenient. Note that inside a linking algebra, the E;; are automatically
idempotent algebras, and all module structures on the E;; are unital. Also
note that when (E, e) is a linking *-algebra, the E;; are *-algebras.

Similarly, one can introduce the non-unital versions of linking algebras be-
tween idempotent algebras, and we omit the obvious definition.

We leave it as an exercise to check that if (F, e, ® 4, ®p) is a linking algebra
between which is firm, or non-degenerate, or with local units, then both A
and D have the same property. Also, if A and D are algebras with local
units, then any linking algebra E between them also has. However, the
fact that A and D are non-degenerate does not imply that a linking algebra
between them is non-degenerate, and neither does the fact that A and D are
firm imply that a linking algebra is firm, as the following example shows:
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Example 2.2.3. Denote by B the algebra A of Example 2.1.2, and by A the

algebra of Example 2.1.3. Then Fy = < j i ) and FEy = ( g g ) are

examples of respectively a degenerate linking algebra between non-degenerate
algebras, and a non-firm linking algebra between firm algebras.

Proof. 1t is clear that F; and Fy are well-defined since both are quotient

algebras of ( g g ), the first by dividing out the 2-sided ideal spanned
1
a0 0 0 0 0 o
by < 0 0 >, ( ol 0 ) and ( 0 ol ), the second by dividing out the

0 ol
2-sided ideal spanned by < 0 0 >

It is also trivial to see that F; and Fs are indeed linking algebras between
resp. A and itself, and B and itself.

We already know that A is a non-degenerate algebra. However, F; is de-
1
@

0 0 > is a zero multiplier.

generate, since (

We further know that B is firm. But the same argument as in Example 2.1.3
shows that F is not firm, by considering the element a}{g ® a}f, where a}; j
E

is the element o' at position kj. O

Definition 2.2.4. Let A and D be two idempotent algebras. We call them
Morita equivalent when there exists a linking algebra between them.

When A and D are firm (resp. non-degenerate and idempotent), we call
them firmly (resp. non-degenerately ) Morita equivalent when there exists a
firm (resp. non-degenerate) linking algebra between them.

It is clear why we restrict to idempotent algebras in the first place: otherwise
an algebra is not necessarily Morita equivalent with itself. However, even in
the case of idempotent algebras, it is not immediately clear if this Morita
equivalence really defines an equivalence relation. But it is easy to check
that one can still define an identity linking algebra, the inverse of a linking
algebra, and the composite of two linking algebras, in exactly the same way
as for unital algebras, which clearly suffices to show that our Morita equi-
valence is an equivalence relation.
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For firm algebras and firm linking algebras, it is then not difficult to show
that the identity linking algebra provides a unit for composition (up to iso-
morphism), and the inverse an inverse for composition (up to isomorphism).
This will not be true in general. However, for non-degenerate linking al-
gebras, we can define the composition in a different way, which will make
these two statements true. Namely, let E11, Foo and F33 be idempotent non-
E1n Eng

a non-degenerate linking al-
Es1 Ea & &

degenerate algebras, (Eq,e) = (

Ey  Eas

gebra between F11 and Fa, and (Ea,e’) = ( Fa E
32 L33

) a non-degenerate

linking algebra between Fss and Fs3. Define
ij : Eij g Homk(Ejk,El- ) : Zij —> (’w]'k —> Zij . wjk).

Then all ij are faithful, by the non-degeneracy of F; and Fs. So identifying

Eij with its image under 7T,L»2j, and deﬁning E13 = E12-E23 and E31 = E32-E21

by composition of linear maps, it is easy to see that ( 1 13 ) is a link-
E31 Ess

ing algebra between F;; and FEs3, which we shall then call the composition
of Fy with Fy. As for unital algebras, we will call (Ej;); jef1,2,3; the asso-
ciated 3x3-linking algebra between E; and Fy (and similarly of course for
the composition of firm linking algebras).

Lemma 2.2.5. The composition of two non-degenerate linking algebras is
again non-degenerate.

Proof. Left non-degeneracy is easy to verify, using the linking algebra prop-
erties of K1 and Fs, and the fact that Fy3 is defined by linear transformations
from FEs39 to Es.

Right non-degeneracy then also follows straightforwardly. For example, sup-
pose T12; € E12 and Y23, € E23 Satisfy Zz Z211%12,iY23,5 = 0 for all Z11 € E11.
Multiplying to the right with some wss € E3s, we find, since Ei9 is a non-
degenerate left F71-module, that Zixlg,iy237iw32 = 0. Since wsy was arbi-
trary, > x12,i423, = 0.

O]

For algebras with local units, it is easy to see that both possible composi-
tions of linking algebras, either considering them as firm or non-degenerate,
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coincide, for the canonical map Ei13 ® Fao3 — Fi3 is easily seen to be an
E2o
isomorphism of F1i-FE33-linking algebras: if x12; € E12 and y23,; € Ea3 with

D %12,iY235 = 0, choose a joint left local unit for the x12;, and write it in
the form Zj wi2,j221,. Then

Zwlu ® Y23
7 Eao

(wi2,j221,2124) & Y23,
’ Eao

Z’j
= 21012,]' ® (221,j%12,iY23,)
i E>s

= 0.

Let (E,e) be a linking algebra. Then if m € eM(E)e (resp. m € (1yyg) —
e)M(E)(1yg) —€)), we can restrict m to a multiplier of A € F (resp. D <

E).

Lemma 2.2.6. Let (E,e) be a non-degenerate linking algebra. Then the
natural map from eM(E)e to M(A) is an isomorphism. Similarly, (1g —
e)YM(E)(1g — €e) can be identified with M (D).

Proof. Consider the map
M(A) - Endg(C) :m — (a-c—>m-(a-c):=(ma)-c).

This will be well-defined for the following reason: by unitality of C as left
A-module, every element of C' can be written as ), a; - ¢;, and if >, a; - ¢;
would happen to be zero, then

a- (Z(maz) L) = Z(am) (a; - )

% )

and by the same calculation, also b (3,(ma;) - ¢;) = 0 for b = 3 b; - a’; € B.
By unitality of B as a right A-module, any element of B can be written in
this way, and so we find that

0 0
x - , for all x € F,
( 2(mag) -ci 0 )

so that also }};(ma;) - ¢; = 0 by non-degeneracy of E. This shows the
well-definedness of the map. Similarly, we can define

M(A) - Endg(B):m — (b-a —b- (am)).



2.3 Multiplier Hopf algebras 79

Now if m € M(A), we can define a multiplier ( 8

mined in the obvious way, using the action of M(A) on B and C introduced
in the previous paragraph. It is clear that this will give us an inverse for the
map whose definition was given just before the lemma.

0 ) in eM(E)e, deter-
m

The statement about D of course follows by symmetry.

By the previous lemma, we can unambiguously introduce the notations
M(B) := (1g — e)M(E)e,

M(C) := eM(E)(1p — €)

for a non-degenerate linking algebra (F, e). The same can of course be done
for non-degenerate 3 x3-linking algebras.

2.3 Multiplier Hopf algebras

The following definition was introduced in [92]. The notation used is ex-
plained at the end of section 2.1.

Definition 2.3.1. A multiplier Hopf algebra? consists of a triple (A, Ma, A ),
with (A, M4) an idempotent non-degenerate algebra, A4 a u.u.e. homomor-
phism A — Mi2(A® A), called the comultiplication or coproduct, such
that

e (Ay®ia)As=(a®AQAY (coassociativity)
e the maps

Ta,2: AOA—>AQA: a®d - Ax(a)(1®d),
Tin, :AOA->AQA: a®d - (a®1)As(d),
Ta,1: AOA—>AQA: a®d — Ayla)(d ®1)
Ton, :AOA->ACA: a®d - (1®a)As(d)

)

are bijective.

2Warning: What we define as a multiplier Hopf algebra, is called a regular multiplier
Hopf algebra in [92].
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Note that the first condition makes sense, since both A4 and ¢4, by idem-
potency of A, are u.u.e. maps, hence (Ag ® t4) and (14 ® Ay), which are
uwu.e. maps AOA - M(A®A® A) by Lemma 2.1.9, can be extended to
M(A® A). Then we can also make sense of

Af) = (AA®ta)As = (La®AQ)AL

as a homomorphism A - M(A® A® A) (and in fact as a homomorphism
A — M22313(AOAE®A)). We also remark that the bijectivities of the
four T-maps are not all independent: for example, any one of them follows
from the bijectivity of the other three.

We want to remark that the idempotency of A can in fact be dropped from
the definition, by formulating the coassociativity condition in a slightly
more complicated way (see the original article [92]). Then since the co-
multiplication is u.u.e., the surjectivity of one of the T-maps gives us that
AOA = A® A2 (or AQQA), from which the idempotency easily follows. (We
should remark however that in the original article, also the u.u.e. property
of A4 is dropped. This is no problem, since the surjectivity of the T-maps
implies (A® A)A4(A) = Ap(A)(AQA) = A® A? = A2(O A. Since A% # 0
by non-degeneracy of A, this implies A2 = A and hence also A4 u.u.e.)

The following result comes from [92]. The techniques used for proving this
statement have in fact already made their appearance in the first chapter,
and will later be used again, so we do not provide the proofs.

Proposition 2.3.2. Let A be a multiplier Hopf algebra. Then there exists
a unique linear map €4 : A — k, called the counit, such that

(fa®ea)(Aa(a)(1®a’)) = a-d,
(ta®ea)(As(a)(d ®1)) =a-d.

This € o4 will then be a homomorphism.

There also exists a unique linear map Sa : A — A, called the antipode, such
that

Ma((Sa®ta)(Aa(a)(1®d))) = eala)d,
Ma((ta®Sa)((d' ®1)As(a)) = eala)d’.

This map will then be an anti-comultiplicative anti-automorphism.
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In fact, multiplier Hopf algebras can also be defined by asking the existence
of antipode and counit instead of the bijectivity of the four T-maps, as is
more customary in the Hopf algebra case. However, the definition we gave
was the original one, and is also the one which reappears most naturally in
the analytic framework.

We will still use Sweedler notation for a multiplier Hopf algebra A, that
is, write A4(a) as a(1) ® ag), but now this expression is even more formal
than for Hopf algebras, because a(;) ® a(3) doesn’t even denote a sum of
simple tensor elements. For example, the expression a(jya2)a3)a) will in
general be meaningless. However, when one of the legs of A 4(a) is covered,
for example, when the first leg of A4(a) is covered by a’ to the left, as in
(' ®1)Aa(a), then the expression a’ - a(;) ®@a(z)y does become simply a finite
sum of elementary tensors. We refer to [96] for a careful analysis of this
technique.

If A is a multiplier algebra, and w is a functional A — k, one can make sense
of (14 ®w)(As(a)) as a multiplier of A, by

(ta @w)(Aa(a)a’ := (ta ®@w)(Aa(a)(d' ®1)),

(14 ®@w)(Aa(a)) == (ta@w)((a' @ )Ax(a)).
Similarly, (w ®ta)(Aa(a)) is a multiplier of A.
We also remark the following nice property of the underlying algebra of a
multiplier Hopf algebra (see [29]):

Proposition 2.3.3. Let A be a multiplier Hopf algebra. Then A has local
units.

2.4 Algebraic and *-algebraic quantum groups

2.4.1 Algebraic quantum groups

Multiplier Hopf algebras become especially nice when they possess a certain
special functional. The following definition comes from [93].

Definition 2.4.1. An algebraic quantum group is a multiplier Hopf algebra
A for which there exists a mon-zero functional ¢4 : A — k such that

(ta®@a)Aala) = pala)ly for all a € A.



82

Chapter 2. Preliminaries on algebraic quantum groups

Such a w4 s called a left invariant functional.

Here are some nice facts about left invariant functionals (we refer to [93] for
proofs):

Definition-Proposition 2.4.2. Let A be an algebraic quantum group, and
pa aleft invariant functional.

1.

If ¢!y is another left invariant functional, then ¢’y = X - pa for some
non-zero X\ € k.

. The functional @4 is faithful: if a € A and ((pa(ad’) = 0 for all

a'eA)or (pa(d'a) =0 for alla’ € A)), then a = 0.

. There exists a unique automorphism o4 of A, called the modular au-

tomorphism of ¢4, such that

oa(doa(a)) = palad’) for all a,d’ € A,
and then pp 004 = Q4.
The functional Y := @a 0S4 is right invariant:

(Va®ra)(Aala)) =vala)la for all a € A.

Again with 14 = pa o Sa, there exists a unique invertible multiplier
94 € M(A), called the modular element of A, such that

Yala) = pa(ada)
and
(pa®ta)(Aala)) = pala)ia

for all a € A. Moreover, o a(a) := da04(a)d, is then a modular
automorphism for 4.

There exists a non-zero number vy € k, called the scaling constant of
A, such that 40854 =va-pa and 04(64) = VZI‘SA'

The following commutation relations hold:
Spo04 = 0;11 0S4,
Spo04 = 02105,4,
ApoSi=(ca®c ) oAy,
Agooa=(S3Q04)0 Ay,
Agoroy= (CJ‘A@SZ2) oAy.
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The nicest thing about algebraic quantum groups is that they allow for a
duality theory. Note that by the previous proposition, the following vector
spaces are equal:

{pa(-a) |ae A},
{pala-)|ae A},
{ba(-a) | a € A},

{ala-)|ae A}

We denote by A this canonical subspace of A*, the dual vector space of A,
and call it the restricted dual of A. The functional w € ﬁ’ evaluated in
a € A, will be denoted as w(a), although sometimes, when we view A as a
subspace of (A)* in a natural way, we also denote it as a(w).

We can equip A with a non-degenerate multiplication M 3: for wy,ws € /Al,
their product is defined to be the functional

(w1 - w2)(a) = w1((t @w2)(Aala)),

which is meaningful by the precise form of the w;. One then shows that
this product ends up in A. We can also equip A with a w.ue. coassomatlve
comultiplication A 3, turning it into a multiplier Hopf algebra. This A i
uniquely determined by

(A (w113 ®@w2))(d ®a) = wi(d apy)wa(a)).

Finally, A is an algebraic quantum group, a left invariant functional ¢ 7
being given by the formula

¢3(w) =¢e(a) when w = pa(a-).

(Note that by faithfulness of ¢4, such an a is uniquely determined.) The
dual of A is then canonically isomorphic to A as an algebraic quantum group,
by sending a to the functional a(-). One can then also directly interpret
M (A@ﬁ) as a subspace of (A®A)*, and the formula for the comultiplication
simplifies to

Az(w)(a®d) =w(a-d).

Since one can interpret M (ﬁ) as functionals on A, we can ask ourselves how
the functional ¢ ; looks like. This, and similar questions, are answered by
the following Proposition:
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Proposition 2.4.3. Let A be an aAlgebmic quantum group, and A its dual.
Let 6 3 be the modular element of A, and o4 the modular automorphism of
wa. Then for all a € A, we have

d7(a) = ea(oy(a)).

Further, we have
(0 4(w)(a) = w(S%(a)o3"),

(0 2(w)(a) = w(03"55%(a))-

The result concerning d ; was noted in [55], and a straightforward algebraic
proof (in a more general setting) was given in [25].

2.4.2 *-Algebraic quantum groups

The following *-version of multiplier Hopf algebras and algebraic quantum
groups was also given in [92] and [93].

Definition 2.4.4. A multiplier Hopf *-algebra is a multiplier Hopf algebra
over C, together with a *-algebra structure on the underlying algebra, in such
a way that As(a*) = Ay(a)*.

A *-algebraic quantum group A is an algebraic quantum group over C, which
is at the same time a multiplier Hopf *-algebra, such that there exists a
positive left invariant functional p4:

oala*a) =0 for all a € A.

We note how the *-structure of A interacts (in both cases) with the other
structure of A (see [93]): we have that 4 is a *~homomorphism and that
Sa(a*) = S, (a)*, and in the case of *-algebraic quantum groups, we have
that 0% = 64, and ca(a*) = 0, (a)* and o4(a*) = 0, (a)*. Also, in
this last case A will then be a *-algebraic quantum group, with *-structure
w*(a) = w(S4(a)*). The formula for a left invariant functional on A, given
in the previous section, will automatically give us a positive functional.

The condition of positivity on the left invariant functional is a strong one:
for example, in the definition, one only has to ask the non-degeneracy of
the underlying algebra to deduce the complete positivity of the underlying
*-algebra, for then already ¢4(a*a) = 0 will imply a = 0. This follows
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almost straightforwardly from the Cauchy-Schwarz inequality and the faith-
fulness of p4 as a functional on the associated algebra, except that we also
need to use the existence of local units in A to know that ¢4 is hermitian
(i.e. pa(a*) = pa(a)). It is then of course obvious that A, with the inner
product {a,a’ys = pa(a’*a), becomes a pre-Hilbert space.

The positivity of w4 also allows us to put an analytic structure on a *-

algebraic quantum group, and to fit it into the theory of locally compact
quantum groups (which is recalled in the fifth chapter of this thesis). This
was first observed in [55], but the methods used were highly non-trivial, and
relied on some heavy machinery. In [21] it was observed that these results
could be arrived at in a much simpler way, without even leaving the realm
of pure algebra. Moreover, it tells a lot more about the actual structure of
*_algebraic quantum groups. We reproduce these results here.

Lemma 2.4.5. Let A be a *-algebraic quantum group. If a is a non-zero
element in A and n is an even integer, then a*((o 4)"S%")(a) # 0.

Proof. Suppose that a € A and n € 27 are such that
a*((0.4)"S%"(a)) = 0.

Then using that o 4 and 5,24 commute, applying agn/ QSE” and using the
commutation with *, we find that

(07?55 (a))* (07} (a)) = 0.

Since A is positive, az/zSﬁ(a) = 0, hence a = 0.
O]

Lemma 2.4.6. Let A be a *-algebraic quantum group, and write Ky =
JZISE‘. If a € A, then the linear span of the " (a), with n € Z, is finite-
dimensional.

Proof. Let a be a fixed element of A. Choose a non-zero b € A, and write
a®b= ) Aup)(1®a),
i=1

with p;,q; € A. Denote py = @ AS%. Then using the commutation relations
of Definition-Proposition 2.4.2, we find

Kk(a) @ p"(b) = 2 Aa(pi)(1® p" (a:)), for all n e Z.
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Multiply this equation to the left with 1 ® b* to get

Kl (a) @ b*p"(b) = D (L@ D" )Aa(p)) (1 ® p3" (41))-

Choose a;j,b;; € A such that
(1@b)Aalpi) = ), aij @by,
j=1

and let L be the finite-dimensional space spanned by the a;;. We see that
k' (a) @ b*p"(b) € L ® A, for every n € Z. Using the previous lemma, we
can conclude that £%(a) € L for all n € 2Z. But this easily implies that the
linear span of all «'}(a), with n € Z, is a finite-dimensional, x4-invariant
linear subspace of A.

O

Now note that for w e A and b e A, we have, by Proposition 2.4.3,

(W-03)(0) = (ea00ox )(w@ea)(Aa(D)))
= eal(wo S3®ua)(Aaloy' (b))
= w(ka(b)),

where r 4 still denotes 0,1 S%. If w is of the form @4(-a), then

(pa(-a)-3)(b) = @aloy (S4(b))a)
= pa(aSi(b))
= vapa(S3°(a)b)
= vapa(bry'(a)).
So the previous result implies that for w fixed, the linear span of the w-§"% is
finite-dimensional. The same is then also true for left multiplication with ¢ ;.

By biduality, we conclude that for each a in A, the linear span of the §’;-a is a
finite-dimensional space K. Since left multiplication with ¢ 4 is a self-adjoint
operator on K, with Hilbert space structure induced by ¢4 (i.e. {a,bys :=
va(b*a)), we can diagonalize §4. Hence we arrive at

Proposition 2.4.7. Let A be a *-algebraic quantum group. Then A is
spanned by elements which are eigenvectors for left multiplication by 6 4.

We can use this to answer a question of [53]:
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Theorem 2.4.8. Let A be a *-algebraic quantum group. Then the scaling
constant v4 equals 1.

Proof. Choose a non-zero element a € A with d4a = Aa, for some A € Ry.
Then pa(aa*ds) = Apa(aa™). But the left hand side equals

I/ZIQOA((SACLCL*) = u;l)\goA(aa*).

Since p4(aa™) # 0, we arrive at v4 = 1.

Proposition 2.4.7 can be strengthened:

Theorem 2.4.9. Let A be a *-algebraic quantum group. Then A is spanned
by elements which are simultaneously eigenvectors for Si, o4 and o4, and
left and right multiplication by d 4. Moreover, the eigenvalues of these actions
are all positive.

Proof. We know that A is spanned by eigenvectors for left multiplication
with 6 4. The same is then true for right multiplication with 04, using that
right multiplication with d4 is still self-adjoint with respect to (-, - >4, us-
ing that 6% = 64 = 04(da) by the previous theorem. The eigenvectors of
KA = 0215124 and pg =@ AS% then also span A, since these are easily shown
to be self-adjoint operators with respect to the natural Hilbert space struc-
ture on A, and since we have moreover shown in Lemma 2.4.6 that A is the
union of finite-dimensional globally invariant subspaces for them. Since all
these operations commute, we can find a basis of A consisting of simulta-
neous eigenvectors. Since 04,0 4 and 5124 can be written as compositions of
the maps k4, pa and left and right multiplication with ¢ 4, the first part of
the theorem is proven.

We show that left multiplication with § 4 has positive eigenvalues. Fix a € A.
Let A be an eigenvalue for left multiplication with §4, and b an eigenvector
for it. Consider ¢ = A(a)(1 ®b). Then (pa ® ¢4)(c*c) will be a positive
number. But this is equal to p4(a*a)pa(b*dab) = Apa(a*a)p(b*b). Hence
A must be positive. Then also right multiplication with 4 will have pos-
itive eigenvalues. As before, duality implies that k4 and p4 have positive
eigenvalues (cf. the discussion before Proposition 2.4.7), hence the same is
true of 04,0 4 and 5124.

O
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This theorem ezplains why there exists an analytic structure on a *-algebraic
quantum group A (cf. [55]).

We can also see now that ¥4 = 4054 is a positive right invariant functional,
which is a priori not clear. Indeed: we can define a multiplier (52/ in M (A),
by the unique property that if a € A is an eigenvector for left multiplication
with 04 with eigenvalue A, then 5114/2 -a = A/2a. Then (5114/2)* = 5114/2 and
(5%2)2 = 4. An easy eigenvector argument also shows that o4 (5114/2) = 5114/2.
Hence

Ya(a®a) = pala*ada)
= a((ad{?)*as?)
= 0,

and 14 is positive.

2.5 Galois coactions for multiplier Hopf algebras

We introduce some definitions and results concerning (Galois) coactions for
multiplier Hopf algebras, taken from [97]. We follow again the notation used
at the end of section 2.1.

Definition 2.5.1. Let A be a multiplier Hopf algebra, and let B be a non-
degenerate algebra. A right coaction ap of A on B is an injective u.u.e. ho-
momorphism

ap: B — My;(B® A)
satisfying (ap @ ta)ap = (L @ Aa)ap.

The defining property is meaningful since (ap ® t4) and (1p ® Ay) are
u.u.e. homomorphisms BOA — M (B®A®A), hence have unique extensions
to homomorphisms M(B®A) > M(BO®A®A). The maps BOA—> BOA
given by

Top2:b®a— ap(b)(lp®a),

T2,aB : b®a — (13 ®a)aB(b)

are then well-defined bijections, their inverses determined by

T,!y:b®Sala) > (15 ®Sa)((1p @ a)ap(b)),
Tyap  b® S, (a) = (15 @5, )(ap((b)(1p ®a)).
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Note then that since ap is u.u.e., this says that BO A = ap(B)(BOA) =
B?® A, so B is automatically idempotent.

The injectivity of ap implies that (tp ®c4)(ap(b)) = b for all b € B (where
a priori the left hand side has to be treated as a multiplier).

Definition 2.5.2. Let A be a multiplier Hopf algebra, and ap a coaction
of A on a non-degenerate algebra B. Then ap is called reduced if ap(B) <
Mi2(B© A).

In fact, one only has to ask that

(B®1a)ap(B) € BOA,
for then automatically

ap(B)(B®1la4) € BOA

(see the remark after Proposition 2.5 in [97]).

Definition 2.5.3. Let ap be a coaction of a multiplier Hopf algebra A on
a non-degenerate algebra B. The algebra of coinvariants F = B*B < M(B)
for ap is the unital algebra of elements b in M(B) such that ap(b) = b®1 4.

Definition 2.5.4. Let A be a multiplier Hopf algebra, and ap a coaction
of A on B. We call ap a Galois coaction, or say that it has the Galois
property, if it is reduced, and if the map

G:B ® B>BOA: bRV — (b®14)ap(t),
BB F

which s called a Galois map for ap, is bijective.
When A is an algebraic quantum group, the bijectivity of G in the previous
definition already follows from the surjectivity of this map (see Theorem 4.4.

in [97]). Also, for Galois coactions of general multiplier Hopf algebras, we
have that ap is Galois iff the map

H:BOB—->BOA: bRV — aB(b)(b'®1A)
F F
is bijective. For example, in case G is bijective, the inverse map of H is

given by
H'(b®a) = GTH (1@ S, (a)an(b)).






Chapter 3

Galois objects for algebraic
quantum groups

In this chapter, we develop a theory of Galois objects for algebraic quantum
groups, i.e. of Galois coactions with trivial algebra of coinvariants. The em-
phasis here is mainly on the structure of the Galois object themselves: we
postpone the reflection technique, already encountered in the first chapter
in the setting of Hopf algebras, to the fourth chapter. We show that Galois
objects for algebraic quantum groups possess a faithful invariant functional,
a modular automorphism for this functional, and also a modular element.
We further show that they possess an analogue of the antipode squared of
a quantum group. This latter map is defined in a way which is specifically
adapted to the algebraic quantum group case, and there seems no analogue
of this map for Galois objects for multiplier Hopf algebras, without impos-
ing extra, not very natural conditions. We also consider the special cases of
Galois objects for algebraic quantum groups of compact and discrete type,
and for *-algebraic quantum groups.

3.1 Definition of Galois objects

Definition 3.1.1. Let A be a multiplier Hopf algebra. A right Galois object
(B,ap) for A is a non-degenerate algebra B, with a right Galois coaction
ap of A on B, such that the algebra B*B of coinvariants equals k - 1.

We will also talk about right A-Galois objects B.

91
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In this chapter, we will now say nothing about the general case of multiplier
Hopf algebras, but will exclusively treat the case of Galois objects for alge-
braic quantum groups. Therefore, when talking about right Galois objects,
we always mean right Galois objects with respect to an algebraic quantum
group. For the rest, we keep using the notation as in the last section of the
previous chapter.

Proposition 3.1.2. Let B be a right A-Galois object. For a € A, there
exists a (unique) Ba(a) € M(B ® B) which satisfies

(b®1)fa(a) = G~ (b@a),
Ba(@)(1®b) = H'(0® Sa(a)).

forallbe B and a e A.
Proof. We have to see if
(G 0®a) - (1Y) = (b®1) - (H (' @ Sa(a))).
Now G(b@ V") = GbRV) - a(b"), s0
Glb®a)- (1Y) =G H(b®a)ap(d)).
Similarly, H(b' @ b") = ag(b)H{H @b"), so
(b@1) - (HH(V' ®Sa(a))) = H ' (ap(b)(t' @ Sa(a))).

By the formula for H~! given at the end of section 2.5, we then only have
to see if

(b®@a)ap(l) = (Trap © (15 ® S5 (ap(b) (¥ ® Sa(a))).
Since Th o, (b®ad’) = (1®a) - T 0, (b®a’), this reduces to proving that
(b®@Dap(t') = (Trap © (L5 ®S3")(ap®) (V' @1)).

But this says exactly that G = T5 4, © (tB ® Sgl) o H, which follows again
by the identity at the end of section 2.5.
O

We will show later that also the maps

b®a — [3,4(@)(()@1)
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and

b®a— (1®b)34(a)

are bijectionsfrom B® A to B® B (see Corollary 3.5.2). This will allow
us to regard (4 rather as a map 4 : A > M(B°P ® B), which is really the
more natural viewpoint.

For computations we will keep using the Sweedler notation for Galois ob-
jects, denoting

ap(b) = by ®bq)

and

Bp(a) = M @al?,

Then by definition we have the identities

(1,02 21 _
b?l] ’ 2(0) ° a[l](l) o
a (O)a[ h®a = b® S(a),
for all be B,a € A. Applying tp ® €4 to the first equation, we obtain the
formula

balal?! = ¢ 4 (a)b.

We want to remark and warn again that the use of the Sweedler notation
here is more delicate than for Hopf algebras.

3.2 The existence of invariant functionals

For any functional w on a right Galois object B, we can still interpret
(w®ta)(ap(b)) in a natural way as a multiplier of A. On the other hand,
by reducedness of the coaction g, we can also interpret (1p @ w)(ap(b)) as
a multiplier of B, for any b€ B and w € A*.

Definition 3.2.1. Let B be a right A-Galois object. By an invariant func-
tional on B we mean a functional w on B such that (w®t4)(ap(b)) = w(b)1la
for all be B. More generally, if m is a multiplier of A, we mean by an m-
invariant functional on B a functional w on B such that (w®ta)(ap(b)) =
w(b)m for allbe B.
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Theorem 3.2.2. Let B be a right A-Galois object. There exists a faithful
d a-tnvariant functional pp on B such that

(LB ® pa)(ap (b)) = ¢B(b)1a
for allbe B.

Recall that the faithfulness of the functional ¢ g means that p(bb’) = 0 for
all b/ implies b = 0, as does @p(V'b) = 0 for all b'.

Proof. Take b,b' € B and a € A. Denote b” for (tp ® pa)(ap(b)) € M(B).
Then we compute in detail, using the definition of the extension of ap to
M(B), of (ap®t4) to M(A® A), and the defining left invariance property

of pa:

ap(t’)(ap(®)(1®a))

= ag(®'V)(1®a)

ap((te @ pa)(apd)(V' ®1)))(1®a)

LB ®ta®pa)((ap®ua)(apd)(V'®@1)(1®a®1))
LB ®ta®pa)((ap®ua)(ap(d)(ap()@1)(1®@a®1))
B ®ta®pa)((tp ® Au)(ap (b)) (b ® biya ®1))
LB ®ta®pa)((tB ® Aa)(ap(b)(bigy @ 1)) (1@ bl1ya®1))
= boyblo) ® (ta @ pa)(Aa(b))(bfa®1))
= b(o)blgy ®palba))biyya
= ("@(ap(y)(1®a)),

|
A~ N N~
A~ A~~~

where the reader should make sure for himself that these expressions are
all well-covered. It follows that v = (1p ® pa)(ap(b)) is coinvariant, so
b" = op(b)1p for some scalar pp(b), by definition of a Galois object. It is
clear that ¢p then defines a linear functional on B.

We show now that this map ¢p is da-invariant: for b,b’ € B and a € A, we
have

(b)Y ®@baya = byb' @ wa(by)ba)a
boypa (b))t @ daa
oLV @I aa,
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where we used that (p4 ®t4)(As(a)) = pala)da for a e A.

Finally, we prove faithfulness. Suppose b € B is such that ¢p(bb’) = 0 for
all ¥’ € B. Then

gOA(b(l)bl(l))b(o)bl(o)b” =0 for all b,, v € B.
Using the Galois property, it follows that
@ a(baya)boyh’ =0 for all ¥’ € B and a € A.

The faithfulness of ¢4 implies that b)b' ® by = 0 for all ¥’ € B, hence
b = 0. Likewise @p(b'b) = 0 for all ¥’ € B implies b = 0. O

Corollary 3.2.3. The underling algebra B of a right A-Galois object has
local units.

Proof. One can copy for example the proof of Proposition 2.6 in [29]: let
b € B, and suppose b - B does not contain b. Then we can find w € B*

with w(b) = 1 but w.p = 0. Then also w(bb’(o))b’(l)a =0 for all ¥ € B
and a € A. Hence w(bb'(o))b'(l) = 0 for all b’ € B, and applying p4, we get
ep(b)w(b) = 0. Since ¢p is a non-zero functional, this is only possible if

w(b) = 0, which gives a contradiction. O

Proposition 3.2.4. Let B be a right A-Galois object. Forae A andbe B,
we have

ep(a@pall = p4(a)d

and
goB(a[l])a[Z]b = 14(a)b.

Proof. Using the explicit form for the inverses of the maps G and H, given
in Proposition 3.1.2, the stated identities are equivalent to the identities
@A(b(l))blb(o) = (pB(b)b/ and (wA o Sgl)(b(l))b(o)bl = (pB(b)b/ for all b, b e B,
which hold true by definition of ¢ p.

O

Theorem 3.2.5. Let B be a right A-Galois object. There exists a non-zero
mwvariant functional ¥ on B.

Proof. Choose be B and put

) = on b blval):
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It is easy to see, using the right invariance property of ¥4 w.r.t. A4, that
this functional is invariant. Suppose that w% is zero for all b € B. Then
by the Galois property of ap, we have pg(b')a(a) = 0 for all ¥ € B and
a € A, which is impossible. So we can choose as ¥ some non-zero ¢% O

We prove a uniqueness result concerning the invariant functionals. We can
follow the method of Lemma 3.5 and Theorem 3.7 of [93] verbatim.

Proposition 3.2.6. Ifw}g and %23 are two invariant non-zero functionals on
an A-Galois object B, then there exists a scalar X € k such that 1/1}9 = )\1[)]23.

Proof. First, we show that if ¢p is a non-zero invariant functional on B,
then

{ep(-0) | be B} = {¢p(-b) | be B}. (3.1)

Choose b,V/,b” in B. Then

ap(b) (" ®1) = Z ap(bw)(1® a;)

for some w; € B,a; € A. If further b” € B,a € A, there exist y;, z; € B with

Z ap(by)(z ®1) = a1 ®a).

If we apply & 4 to these expressions we obtain respectively the equalities

(06 )p(b") = 3 i (bwi)palai),
2. eB(by)Ye(2i) = Yp(bb")pala).

Choosing either b” with ¢5(b") = 1 or a with p4(a) = 1, we get respectively
C and 2 of the equality in 3.1.

Suppose now that w}g and w% are invariant functionals on B. Choose b, b; €
B with ¢p(bb1) = 1 and take by € B with ¢5(-b1) = ¥%(-b2). Choosing
V' € B, applying ¥ ® pa to (V' ® 1)ap(bb;) and writing this last expression
as >;(1 ® aj)ap(w;b;) for certain w; € B,a; € A, we see that PE() =
©p(bb2)%(b'), proving that all invariant functionals are scalar multiples of
each other. O
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3.3 The existence of the modular element

Let ¢p be a non-zero invariant functional on a right A-Galois object B.
We prove the existence of a modular element dp, relating the functionals
vp and ¥p. We first prove an important proposition, which is a kind of
strong right invariance formula, familiar from the theory of locally compact

quantum groups. (It is easily seen, looking at the proof, that this formula
is valid for any reduced right coaction that has an invariant functional.)

Proposition 3.3.1. Let B be a right A-Galois object. For all b,/ € B we
have

Sa((p @A) (b @ Dap(t))) = (V5 @ ra)(ap®)(' @ 1)).
and
Sa((ep ®a)(b®@Dap())) = 05" - (95 @ La)(ap () (V' ®1)).
Proof. Choose a € A and b,b' € B. Pick b; € B and a; € A such that

(I1®a)ap(b Eb ® a;.

Then by the formula for 7. 2*70[13 given just after Definition 2.5.4, we have

b/®SA ZOZB J(1® Sa(ai)).

If we denote @’ = SA((YB®ta)((b® 1)ap(V'))), then

a'Sala) = Z Y (bbi)Sa(a;)

2 v8(b(ybie) beaybicny Salas)
= PB(beyb)baySala).
Since a was arbitrary, the first formula is proven.
The second formula is proven in completely the same way, only using now

that (o4 ®ta)(Aala)) = pa(a)ds for a e A.
]
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Theorem 3.3.2. Let B be a right A-Galois object, and Vg a non-zero in-
variant functional. Then g is faithful, and there exists a unique invertible
element 6 € M (B) such that ¢op(bdp) = ¥p(b) for allbe B. Moreover, we

have (1 ® ¥a)(ap(b)) = vp(b)dg"
Proof. We first show that for all b€ B:

Yp(b) =0 = Ya(bay)by = 0. (3.2)
We know that ¢p(b) = 0 implies 9% (b) = 0 for all ¥’ € B, i.c.

Ya(bay)en(bob’) =0

for all " € B. So ¥a(b(1))b(y = 0 by the faithfulness of ¢p.

Hence if 1 5(b'd) = 0 for all b’ € B, then also wA(b’(l)b(l))b”b'(O)b(o) for all
V,b" € B. By the Galois property, 14(ab))b'be) = 0 for all @ € A and
b' € B, and then, by the faithfulness of ¢4, the non-degeneracy of B and

the faithfulness of ap, we have b = 0. Completely similar, one shows that
Yp(bb') = 0 for all ¥’ implies b = 0.

Now from the implication (3.2), it follows that the right hand side is a
one-dimensional space, so we can write 4(b(1))bq) = Apd7; some number
Ay € k and some multiplier §; € M(B), independent of b. Now b — )\,
is easily seen to be a non-zero invariant functional, and replacing ¥ by
this invariant functional (or multiplying §%; by some scalar), we obtain

Pa(b1y)boy = ¥p(b)dp.

Now we show that % has an inverse dg, and that ¢p(bdg) = ¥ p(b). Choose
b" € B with ¢p(b') = 1. Then for b,b' € B, we have, by the previous
proposition,

Yp(bb'0p)

V(b I(/o))(PA(SA(b/(I1)))
= Yp((b) ()" )ea((b0)q))
= @B(bb/%
so by the faithfulness of ¢p, right multiplication with ¢; is faithful. Since
furthermore {pp(-V') | ' € B} = {¢p(-b') | b/ € B}, we have, by the faith-

fulness of ¢, that for any b € B there exists b’ € B with /0% = b, and so
right multiplication with ¢’; is surjective.
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The non-degeneracy of B easily gives that also left multiplication with dp is
injective. To show that this operation is also surjective, we use another
argument. Take b € B and a € A with ¢4(a) = 1. Write b ® a as
D zioywi ® 241y for certain z;,w; € B, and put v = >, ¥B(z)w;. Then
opb" = X valziny)ziywi = Pala)b = b.

Now if [ denotes the operation of ‘left multiplication with dg’ and r the
operation of ‘right multiplication with ¢’;, it is then easy to conclude that
§p = (171, (r1)°P) is a well-defined multiplier of B, and is the inverse of 8.

Then ¢ (bd) = ¢p(b) implies
¥p(b) = pp(bdp)  forallbe B.

By the faithfulness of ¢p, this uniquely determines ¢ 3. O

3.4 The modularity of the invariant functionals

We first prove some identities. The first one is also a variation on the notion
of strong (left) invariance.

Proposition 3.4.1. Let B be a right A-Galois object. For all b € B and
a € A, we have

i) palabay)boy = ep(al?b)all,

i) pa(baySala))bey = ¢p(ball)al.

Proof. Using the identities at the end of the first section, the first equation
follows from

palab@)bboy = palallyby)alla b

- @B(a[ﬂw)b/a[lL
for all a € A and b,V € B. The second follows from

palbySa(@)bo = @albuyay)boyafgalt’

= opba)ally,

for all a € A and b,V € B. O
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Lemma 3.4.2. For all b,b',b" € B and a € A, we have
p5(a?0)pp/al8") = op (o) es '),

where p = (S, o4)(a).

Proof. Using the identities of the previous lemma, we get

w5 (bpM) (b pH") pa(bayoala))ep(d'beyb")
= @alabay)ep(b'byb")
= goB(a[Q]b)@B(b’a[l]b”).

We show now that ¢ possesses a modular automorphism.

Theorem 3.4.3. Let B be a right A-Galois object. There exists an auto-
morphism op of B such that

ep(bop(t))) = op(b'd) for all b,V € B.
Furthermore, ppoop = ¢p.

Proof. Choose b e B. We can then write

b — Zch bl 1 bl/ [2]
for certain b}, b” € B and a; € A, since B2 = B and the map b®a — bal!@al?]

1) 71
is bijective. Define
pr — 2 on(b pz b” ]

with p; = (SZIUA)(W). Then the previous lemma shows that ¢g(b'v") =
ep(bY') for all b’ € B.

It is clear that b” is uniquely determined by this property, by faithfulness
of pp, so we can denote b = op(b). An easy argument shows that op is
a homomorphism. Again by faithfulness of g, it is faithful. To see that it
is surjective, simply reverse the argument in the first paragraph to obtain
that for any b, there exists 05" (b) such that ¢g(c5'(b)b') = @p(b'd) for all
b' € B. Then og(ocp—1(b)) = b. Hence op is an automorphism. It will leave
pp invariant because B? = B. O
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Remarks: 1. As for algebraic quantum groups, the concrete way in which
op is constructed is not so important. What 4s important is its modular
property, which makes up for the fact that pp does not have to be tracial.
2. It is easily seen that the defining property of op also holds for mul-
tipliers: if b € B and m € M(B), then ¢p(bog(m)) = pp(mb), and

p(mop (b)) = p(bm).

Corollary 3.4.4. Let ¢y be an invariant functional on a Galois object B.
Then the functional Y¥g is modular with modular automorphism

o5(b) =65 -ap(d) - 05"

3.5 Formulas

In this section and the next, we collect some formulas. They strongly re-
semble the formulas which hold in algebraic quantum groups, and also their
proofs are mostly straightforward adaptations.

Proposition 3.5.1. Let B be a right A-Galois object. For all a € A, we
have

i) apoop = (0’3@522)0013’
i) (53" o) (@) ® ((S5'0.4)(@) = op(a) @ all.

Proof. Choose b,b' € B and a € A. Then using Proposition 3.3.1 twice, we
get

(s @pa) (¥ ®a)an(os() = vublos®)ealas; b))

- qu(bb(O Jpa(aSyt(01)
Vr by )pa(asy? (b))

¥ (' B(be))palaS, (b)),

applying Proposition 3.3.1 twice. As ¢4 and ¢ p are faithful, the first identity
follows. The second formula was essentially proven in Lemma 3.4.2. O

Corollary 3.5.2. Let B be a right A-Galois object. Then the maps

b@a — Ba(a)(b®1),
b®a— (1®b)Ba(a)

are bijections from BO A to BO B
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Proof. This follows from the second formula of the previous proposition. [

Note that this fact is not at all clear at first sight. In particular, it allows us
to view 54 as a map A — M.2(B® B). Denote then by C the algebra B°P,
and by S¢ the canonical map C — B sending b°P to b for b € B. We can
then give meaning to 84 1= (S;' ® 1)Ba as a map A — My.5(C ® B). Now
as is the case for Galois objects over Hopf algebras, the map 34 will then be
a (u.u.e.) homomorphism. The argument for this is simple: choose b € B
and a,d’ € A, and write ba'Nl @a/2 = > zi®uwy for certain z;, w; € B. Then
(2 ®@a)ap(w;) = b®ad’. Applying G, we obtain Y, ziall @ al2lw; =
alad )N @ (aa)?, so ba'Mall @ ala!? = b(aa’)V ® (aa/)?). This proves
that G4 is a homomorphism.

We can then also construct a Miyashita- Ulbrich action of the algebraic quan-
tum group A on a right Galois object B for it. This is a right A-module
structure on B, defined as

b-a:=alpal?.

One can then show that it satisfies a certain property with respect to the
coaction structure, making it a Yetter-Drinfel’d module, but we will not go
into this here.

Definition 3.5.3. Let B be a right Galois object for an algebraic quantum
group A. We call the homomorphism 34 : A — M(C®B) constructed above
the external comultiplication on A.

In the following, we will always use the symbol C to denote B°P. We
will also use a Sweedler notation for the map B4 in the following way:
Bala) = ap @ ap for a € A.

The following proposition collects some formulas concerning the modular
elements.

Proposition 3.5.4. The following identities hold:
iii) ap(6p) = 65 ®d4,
i) Ba(04) = dc ® dp, where d¢ = (5;1)01) eC,

v) op(0p) = vy op.
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Proof. For b,V € B, we have, using the second formula in Proposition 3.3.1,
that

eB(b(t'58)0)(V'0B)1y = ¢B(bo)b58)S: (b1))da
= ¢Yp(boyb )SA (5(1))5A
= ¥p(bbg))by
= pp(bb 0)53) 1)5A

By faithfulness of o we have ap(b'dp) = ap(t))(dp®3d4), hence ap(dp) =
0B ® 04 by definition of ap on M(B).

For the second formula, we have to prove that
b(ad )M @ (a6 )P = b5§1a[1] ®a?sp

for all a € A and b € B. This follows immediately by applying G and using
the previous formula.

As for the final formula, we have for any b € B that

¢B(db) = pa(dabn))dBb()
= 3 0a(b)04)35(b0)05)d 5"
= V3l pal(b65)1))05(b05) (o) 05"
= v, ¢p(bdp),

which means exactly that op(dp) = 1/2153. O

Corollary 3.5.5. If B is a right A-Galois object, and if ¢'5 is a 0 s-invariant
functional, then there exists X € k with ¢’y = A¢p.

Proof. This follows immediately by the uniqueness of an invariant functional
and the fact that ¢/5(-dp) is invariant. O
3.6 The square of an antipode

Let B be a right A-Galois object. There is a natural unital left A-module
algebra structure on B defined by

w-b:=(pQuw)ap(b)
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for b e B and w € A. The unitality, together with the existence of local
units in A, allows us to extend the A module structure on B to a left M (A)
module structure on B: if m € M(A), we let it act on an element b = >, w;-b;

in B as
m(Zwi - bi) == Z((m cw;) - bi).

This is independent of the chosen representation of b, since if », w; - b; = 0,
we can take w € A with w - w; = w; for all ¢, and then

Z(mwz) -b = Z(mwwi) - b;)

) )

= Z(mw) “(wi - ;)
)
It is further easy to check then that for w € M(A) and b, € B, we have
V- (w-b) = (g@w)((t ®1)ag(h)),

and

(w- )V = (LB @w)(ap(D)(V ®1)),

where we have interpreted M(A) < A*.

Consider the map
S%:B—)B:b—>03(52-b),

where 4 ; is the modular element of the dual (ﬁ, A3), and where the ‘square’
is just formal (i.e., does not really denote the square of something).

Proposition 3.6.1. Let B be a right A-Galois object. Then S% 1s a bijective
homomorphism.

Proof. The bijectivity is clear, since
S§22B—>B:b—>5A (o5 (b))

is an inverse for 5123. As for the fact that S% is a homomorphism, it is
sufficient to check that

S7-(bW) = (35-b)-(57-1).
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But since 6 ; = ¢4 0 UATl is a homomorphism A k, we have that
d7(b- V) = (15® 52)(a3(bb’))
= (tB®d;)(ap(b)ap(t))
= (tB®33)(ap(b))(tp ®dz)(ap(t))
= (6;-0)- (5A'b/)'
O

This map S% plays the role of ‘the square of the antipode’ for B, hence the
notation. Indeed: in case B = A and ap = A4, then S% is exactly S%, using
Proposition 2.4.3 and the commutation relations in Definition-Proposition
2.4.2. Some more reasons to consider this as an antipode squared will be
provided further on.

We can use 5123 to complete our set of formulas.

Proposition 3.6.2. The following identities hold:

vi) agpoop = (S5 ®04) 0 agp,
vii) agoS% =(S3®S5%)oag,
viii) apo Sy = (cp®@a ') oap,

ir) opoS% =S5%00p,

z) S(0B) = 03,

wi) @p(SE(b) = ¢p(65'b08) = vapp(b) forbe B.

Proof. Take b,/ € B and a € A. Then, using again Proposition 2.4.3,
the second identity of Proposition 3.3.1 and the commutation relations in
Definition-Proposition 2.4.2, we find

(V' SE (b)) palaca(bay)) = (05 b)) )ealbaya)

= wBboyb)ealo 4! (b)) palbe)a)
(03" (b))
bbig)) A (@S, (1))

= B b'(o)UB( NalaSy (b))
'o5(0)(0))palaos (b))

(
(
= (b )pa(Sy
= ¢p(bh
(
(

= ppg(bo
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This proves the equality in vi). The equality in wvii) then follows by the
previous one, using that ap(d;(b)) = by ® (65 - b)) as multipliers.

Further,
(V' SE (b)) Va(Si(ba)a) = @pb'oB(b0))d5(bay)a(S7(be)a)
= w'op(b)))ealoy (bay)a(S3(ba)a)
= op(t'op(bo)))valo s (bay)a),
which together with vii) proves viii).
By vi), it follows that also S%(b) = 63 - (o5(b)), whence the commutation
in iz). As for x) we have S3(65) = o5(dp)ea(0; (64)), which equals 5 by

the formula v). The same formula v) also shows immediately the validity of
xi). This concludes the proof. O

Recall that we already constructed a map S¢ : C — B, which was just the
canonical linear map B°? — B.

Definition 3.6.3. Let B be a right A-Galois object. We call the map
Sc:C—-B:b? )b
the antipode on C. We call the map
Sp:B—C:b— (SH(b)”
the antipode on B.

Then indeed, Sc o Sg = S%, so that S% can be considered to be ‘the square
of an antipode’!... If the reader feels cheated at this point, we urge him to
read on.

For example, the following formulas should give a more direct connection
with the defining property of an antipode. We will also write S2(b°P) =
(5%(b))°P for b € B, and continue to use the Sweedler notation for 34, in-
troduced after Definition 3.5.3.

Proposition 3.6.4. Let B be a right A-Galois object. For allbe B,ce C
and a € A, we have

ziii) Sa(a)[) @ Sala)z) = Splag)) @ Sc(apy),
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ziv) cSp(b))b) ® by = c®b,
) capSplap)) = cala)c,
zvi) BaoS% = (52 ®5%) 0 Ba,
zvii) faoop = (5(2; ®op)ofa
Remark: Note that Sp®S¢ is well-defined on M (C® B), so the first identity
makes sense.
Proof. Applying (15 ® ¢p(-b)) to S3(al?!) ® all and using formula vi), we

get

ep(@0)SE @) = 5

so that Sa(a)M ® Sa(a) = S%(al?) @ al'). This is easily seen to be equi-
valent with the first formula.

As for the second formula, we have to show, applying ¢p(-b') to the second
leg and writing ¢ = (b"”)°P, that for all b’ € B we have

2 1
(b )b B (b)) = (00D,
This reduces, by Proposition 3.4.1.(i), to proving that
0 a(b1)b{1))b(0) S (b)) = @B (b)Y
This follows again by formula vi) and the defining property of ¢p.

The last formulae are a direct consequence of the first (using Proposition
3.5.1. i7) for the last one). O

Note that the second identity in the last proposition shows that

C@B—)CQAC@bHCSB(b(O))@)b(l)



108 Chapter 3. Galois objects for algebraic quantum groups

is the inverse of the map
COA->COB:cQa— can®apy,

which correspond to the exact same formula for a (multiplier) Hopf algebra
if we replace C and B by A, Sg by S and 84 by the comultiplication map.
More directly, we also have that Sc(apiy)ap) = €a(a)l = apSp(ap)) (where
the unit in the middle is really in different algebras for the left and right
expression).

However, we want to give a little warning at this point, as the situation could
get a bit confusing when we consider (B, ap) = (A, A4) (which is evidently
a right Galois object for A). For then we have an antipode S4 for the al-
gebraic quantum group (A, A 4), which will be an anti-isomorphism A — A,
but we also have an antipode Sp for the Galois object A, which will be an
anti-isomorphism A — A°P. In some sense, for an algebraic quantum group
the antipode contains extra information, which is not present in its square.
But for a Galois object, the antipode is really just a formal construction
using its antipode squared.

We want to remark that the notion of an ‘antipode squared’ on a Galois
object for a Hopf algebra was considered more or less in [43], but in a
different set-up. Also, the antipode squared there was a part of the axiom
system. The connection with Galois objects and the redundancy of having
this ‘antipode squared’ in the axiom system, was established in [75]. The
notion of an antipode for a Galois object was considered explicitly first in [§]
(although it seems to have been implicit in earlier work by Schauenburg).
As a final remark, note that we can easily get into Griinspans framework of
quantum torsors, by means of the quantum torsor map

(tp® fBa)ap : B—> M(B® B°® ® B).

However, we have not developed an independent theory for such ‘algebraic
quantum torsors’ (which seems very plausible to exist).

3.7 The inverse Galois object

In the discussion up to now, we have worked exclusively with right Galois ob-
jects. Of course, there is also the notion of a left Galois object, and all results
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obtained for right Galois objects have their counterparts in the left setting.
But the correspondence between right and left Galois objects is more than
a formal one: there is a natural one-to-one correspondence between right A-
Galois objects and left A-Galois objects. For given a right A-Galois object,
we can turn C' = B°P into a left A-Galois object in a straightforward fashion.

Definition-Proposition 3.7.1. Let B be a right A-Galois object The map
Yo :C - MAGC):c— (S, @S, )a (Sc(c))

makes C into a left A-Galois object, which we then call the inverse Galois
object (of B).

Proof. Since (5’21 ®5’51) is an anti-isomorphism A®B — AQ®C, it is clear
that we can extend it to an anti-isomorphism M(A® B) - M(A® (), so
that vo(c) for ¢ € C' is meaningful as an element of M (A ® C). It is also
easy to check that vo gives us a reduced coaction. Since the Galois map is
given by the formula

BP OP — S (b)) @ (Hb(o))P,

it is bijective, by the remark following Definition 2.5.4.
O

It is easy to see that oo = o Sél and ¥¢c = pp o Sc provide resp. an in-
variant and 5;1—invariant functional, using some of the identities established
earlier on. We also state (without proof) that the modular element ¢ con-
necting these two functionals is d¢ = (5151)01’, and that the modular auto-
morphisms o¢ and o ¢ of resp. pc and ¢ are given by o (b°P) = (o 5" (b))°P
and o ¢ (b°P) = (a5 (b))°P. The antipode S¢ : C — C°P = B for C coincides
with the one already introduced.

We also have the following coassociativity properties:

Proposition 3.7.2. Let B be a right A-Galois object. Then for all a € A,
we have

(tc ®@ap)(Bala)) = (Ba®ta)(Aa(a))

and

(o ®tB)(Ba(a)) = (ta ® Ba)(Aa(a)).
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Proof. Note first that the maps 64 ®t4 and 14 ® 34 are u.u.e., so the state-
ment makes sense.

Now if a,a’ € A and b € B, then we compute, using Proposition 3.1.2 and
the identity following it, that
(G® LA)(bCL(l[)l] ® a(l[)z] ® agya’)
= b®aq) ®ap)d
(tB®AL)D®a)(1p®14®d)
(s ® M) (bal Ty @) (12 © 1 ©)
_ (2] (2] (2]
ballla ) @ a"(y) @ a’ya’

= (et @dd) @d)a.

which proves the first identity in the lemma.

As for the second statement, this reduces to proving that
1, [1] (1] _ 1] (2]
S4'(a'(1) ®a g ®al = ap) @agy @)

But again using Proposition 3.1.2 and the identity which follows it, we have
that

(ta® H) (a'a(l) ® a(Q[)l] ® a(z[)z] b)
= a'a(l) @ b @ SA (a(Q))
'S, (Sa(a)) ®b® Sala)q)
(@ H)(@S; (@) @'y @ alh)

3.8 Galois objects of compact or discrete type

Definition 3.8.1. A non-degenerate algebra B is called of compact type if
B has a unit. It is called of discrete type if every subspace of the form bB
or Bb, with b € B, is finite dimensional.

Remark: This terminology is not standard, and we use it solely in this sub-
section.
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Theorem 3.8.2. Let B be a right Galois object for an algebraic quantum
group A. Then the algebra B is of compact type iff A is an algebraic quantum
group of compact type. The algebra B is of discrete type iff A is an algebraic
quantum group of discrete type.

We recall from [93] that an algebraic quantum group A is of compact type
if A has a unital underlying algebra (i.e. is a Hopf algebra with integrals),
and that A is of discrete type if there exists a cointegral h € A, i.e. an ele-
ment satisfying ah = e4(a)h for all a € A. We also note that an algebraic
quantum group is of compact type iff its dual is of discrete type.

Proof. If A is compact, then ap(b) € B® A for any b € B. Choosing b € B
with ¢p(b) = 1, we have that (tp ® pa)ap(b) € B is a unit of B.

If B is compact, choose a; € A and b; € B such that

le®1p = ZﬁA(az‘)(l ®bi).

Taking a € A and multiplying the above equality to the left with 54(a), we
get
Ba(a)(lo®@1p) = Y Balaa;)(1@by),
i

hence, by the bijectivity of the maps in Proposition 3.1.2, we conclude
a®1lp = Y, aa; ®b;. Applying an arbitrary w € B* with value 1 in 1p
to the second leg, we see that A has a right unit. Similarly, one constructs
a left unit. So A is unital.

Now suppose that A is an algebraic quantum group of discrete type. Choose
a non-zero left cointegral h € A, so ah = c4(a)h for all a € A. We can scale
h so that p4(h) = 1. Then for all b,b’ € B, we have

er(0(SE M) (ST )Y = a(bayh)boyb’
= b

by Proposition 3.4.1 ii). Hence if S;'(h))1) @ (S (W)W =3, pi ® g,
we see that for any b € B, the element bV’ lies in the linear span of the g;.
This shows that Bb is finite dimensional. Also o’B is finite dimensional, by
a similar reasoning.
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Conversely, suppose that B is an algebra of discrete type. Take a € A and
b # 0 fixed in B. Write bal ® al?! as ZZ w; ® z;, and choose b’ € B such
that w;b’ = w; for all ¢ (Corollary 3.2.3). Then
dim(4a) = dim{b®da|d € A}
= dim{z wibd™M @dPz | o e A}

N

dim span{) jw;d” @ V"2 | V', 4" € B}
< .

We show that this is sufficient to conclude that A is an algebraic quantum
group of discrete type.

First, applying S4, we see that also all aA are finite dimensional. Choose
a € A with e4(a) = 1. Write I = AaA, which is a finite-dimensional ideal.
Because ¢4 is faithful, we can choose some w = pa(-a’) € A such that
wir = (e4)|;- Take e € A with ae = a. Then for all a” € A, we have

pa(d"ad’)y = pa(a’aea’)
= wj(a"ae)
= ea(d").
Hence ¢4 € A, and A is an algebraic quantum group of discrete type. O

Note that the proof above shows that the terminology we used is consistent:
an algebraic quantum group is of discrete type in the sense of [93] iff its
underlying algebra is of discrete type as defined in Definition 3.8.1. Also
note that if k = C and B is a *-algebra, the condition ‘B is of discrete type’
is equivalent with B being a direct sum of finite-dimensional matrix algebras.

Proposition 3.8.3. If A is an algebraic quantum group of discrete type, and
B a right Galois object for A, then B is a Frobenius algebra in the sense of
[98]: there exists a left B-module isomorphism L : BB* — B, where B* is
the dual space of B.

Here BB* denotes functionals of the form b-w = w(-b) forw € B* and b € B.

Proof. Let p be the right cointegral of A, so that pa = €4(a)p for all a € A.
We assume p normalized, so that ¢ 4(p) = 1. We show then that

(b®1)Ba(p) = Balp) (1Y)
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for all b e B.

Take b, b’ € B and apply (13 ®@¢p(-V)) to S4(p)(1®b). Then we find, using
the first identity in Proposition 3.4.1

(1B ® ¢B)(Ba(p)(1 @ BY))

pp(pPlob)pl!

= palpbybn)bo)bo)

= ealbayb(i))bo)bo)

= b

= pa(pb{y))bbi)

= ep(pPe)bpl!

= (B®eR)(b®1)Balp)(1®Y)).
As p is faithful, this implies (b® 1)34(p) = Ba(p)(1 @) for all be B.

Consider then
¢1: BB* - B:w — (1Qw)(Ba(p)),
¢2: B— BB* :b— pp(-b).
Then ¢; and ¢o are seen to be B-module morphisms, using the above iden-

tity. Moreover, they are each others inverse: choose b € B and w € BB*,
then, by the second identity in Proposition 3.4.1,

ep(b- (5 ®W)(Ba®) = erbp!wE?)

a(bySa(p))w (b))
0a(Sa(p))w(b)

pA(pda)w(b)
= w(b),
showing that ¢o o ¢1 is the identity. The fact that ¢ o ¢o is the identity
follows from g (p21b)pltl = b for all b e B. O

3.9 “-Structures on (alois objects

We now look at the case k = C.

Definition 3.9.1. Let B be a completely positive *-algebra, and let A be a
*-algebraic quantum group. If ag : B — M(B ® A) is a coaction making
(B, ap) into a right Galois object for A (neglecting the *-structure), we call
(B,ap) a right *-Galois object if ap is *-preserving.
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Proposition 3.9.2. Let B be a right *-Galois object for a *-algebraic quan-
tum group A. Then the functional op = (1p ® pa)ap is positive.

Proof. We have to show that ¢5(b*b) > 0 for all b € B.

First remark that ¢p is hermitian: if b,b’ € B, we have

e = 0al(b")1) (0" )’

hence pp(b*) = pu(b).

Now take non-zero b,b’ € B, and write ap(b)(b' ® 1) = >, w; ® p; for certain
w; € B and p; € A. Then

(0" D)™V = (1B ®pa)((ap(®d) (' ®@1)" (asd)(' ®@1)))
= Z@A(prz‘)w;wi-

By positivity of ¢4, the matrix (@A(p;fpi))i,j will be positive, so that we
can write @ (b*b)b™*b = ), 2¥z; for certain z; € B. Then ¢p(b*b), which
is a real number, must necessarily be positive, or else we would violate the
complete positivity of B.

O]

There is a nice formula relating 54 and the *-operation, but for this, we have
to choose the good *-operation on C' = BP: we define (b°P)* := S%(b*)°P.
Then C is again a *-algebra: the only thing which may not be clear at first
sight, is if the *-operation is involutive, that is, if S3(b*) = Sz(b)*. For
this, note first that o5(b*) = o5 (b)*: one verifies this by checking that for
all b,b' € B, we have pp(op(b*)*V') = ¢p(b'b), using that pp is hermitian.
Then note that (05 -b)* = 521 - b*: for this, observe that

(074 (a®))
(0a(a)”)
Ya).

™

d:(a”*) =

A A

™

A

>,
S
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Then with this *-operation, we have the expected formulas

Sc((e)*) = (S5'(e)*
and

Sp(b*) = (S (h)*
for ce C and b € B.

Proposition 3.9.3. For all a € A, we have
Bala)* = Ba(a®).
Proof. For any be B, a € A, we have
@ a(abgy)boy = ¢p(al?b)alll,
by Proposition 3.4.1.(i). Applying *, we see that
pa(bhySa(Saa))bly) = wp(b*a*)alll.

Since the left hand side equals @ (b*(Sa(a)*)[1)(S4(a)*)!2 by Proposition
3.4.1.(ii), we get that (al)* @ (a)* = (Sx(a)*)¥ ® (Sa(a)*)Y) by the
faithfulness of ¢ p. This then becomes Sgl((a[l])*) ®(ap)* = (Sa(a)*)2®
Sc((Sa(a)*)p))- Applying Sp to the first leg and using the identity wiii) in
Proposition 3.6.4, we arrive at the identity stated in the proposition.

O

Let B be a right *-Galois object for a *-algebraic quantum group. We show
now that also the invariant functional g is positive, possibly after mul-
tiplying with a scalar. As for the *-algebraic quantum groups themselves,
this is a non-trivial statement. We again do this by using a diagonalizability
argument.

For instance, take b € B and choose b’ € B with ¢p(b') = 1. Write b® V' as
a sum

bt = biall ®al”!

for certain b; € B and a; € A. Write a; = Zj a;; with the a;; eigenvectors
for left multiplication with 4. Then by Proposition 3.2.4 and Proposition
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3.5.4.7v), we have

oy = > enla)bialley

= > wB(dE(0,"a)Pbi(5," ai)!

m

21y, ,[1] *
Span{w(a;;")bia;;" | w € B*},

showing that Span{bd}, | n € Z} is finite-dimensional. The same technique
shows that Span{d}b | n € Z} is finite-dimensional.

Now B becomes a pre-Hilbert space by the inner product (b, b’ )5 := @ (b'*b),

using the positivity, self-adjointness and faithfulness of pp as we did for *-

algebraic quantum groups. Since g : b — p(b*) is also an invariant
functional on B, as is easily checked, we can replace ¥ by ¥p + ¥ of
i(Yp — 1PB) to obtain a hermitian invariant functional, which we will then
take as our new ¥pg. Since op(dp) = dp, the hermitianess of g implies
that 0% = dp, and moreover, that left and right multiplication with dp are
self-adjoint with respect to the scalar product (-, ->p on B. Since left and

right multiplication commute, we obtain:

Theorem 3.9.4. There exists a basis {b;} of B with the b; joint eigenvectors
for left and right multiplication with dp.

Now for b, b’ eigenvectors for left multiplication with dp with respective
eigenvalues A and )\, we can use that

(o5 ® 1) ((b* @ Dap(™t)(b@1)) = NA op(b*b)p(0"Y)
to conclude that A™')\ is positive. After possibly multiplying ¥p with
—1 (and hence changing dp to —dp), this implies that dp is positive. In
particular, this shows again that dp is of the form (5}3/2)2 for some self-
adjoint invertible element 5]13/2 € M(B). If we then choose b € B with
@B((églﬂb')*@;lpb’) =1, we have for any b € B that

UB(b*D) Yp(0*0)pp (V35

(" bo)boy b ) (biyybay)
= 0,

showing
Corollary 3.9.5. There exists a positive invariant functional g on B.

Note that the diagonizability of dg was really only used to find one element
be B with ¢p(b*dgb) # 0.



Chapter 4

Linking algebraic quantum
groupoids

The theory of the previous chapter was concerned with Galois objects, which
were algebras with a special coaction on them by an algebraic quantum
group. In this chapter, we lift to the situation of algebraic quantum groups
Proposition 1.3.10, i.e. we show that from any such a Galois object we can
construct a new algebraic quantum group, and even more, that we have a
natural coaction of this new quantum group on the original algebra, making
it into a bi-Galois object. Our method of proof however is distinct from
the Hopf-algebraic proof, since it is completely based on duality reasonings
(which are not available for general Hopf algebras). For completeness, we
also abstractly characterize the objects which can be considered to be the
duals of bi-Galois objects, namely the linking algebraic quantum groupoids.
After some brief discussion concerning the situation for *-algebraic quan-
tum groups, we end with an example, which, although it takes place in the
setting of Hopf algebras, and thus fits in the framework of Galois theory for
Hopf algebras, at least produces new' examples of infinite-dimensional Hopf
algebras with integrals.

Remark: In the paper [19], we added some categorical results concerning
the categorical equivalence associated to a bi-Galois object, but we will not
include this discussion here. There are several reasons for this. Omne of
them is that the results of [19] are only partial: we constructed from a bi-
Galois object a monoidal equivalence of unital module categories?, but we

las far as we know
2This is certainly easy for algebraic quantum groups, but we payed more attention to

117
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did not consider the question of how to reconstruct a bi-Galois object from
a monoidal equivalence (if this is possible at all without further, maybe un-
natural conditions). Another reason is that we do not think that, at this
stage, the categorical viewpoint would add any extra value to the discus-
sion. We have included it in the first chapter by way of motivation, since
in that case, we can then say precisely what the (big) invariant is which
is preserved under the (co-)monoidal (co-)Morita equivalence, namely some
monoidal category. Because of our lack of a reconstruction theorem, this
‘invariant’ becomes less clear to characterize in the case of algebraic quan-
tum groups, and certainly in the case of locally compact quantum groups,
to be considered in the second part of our thesis.

4.1 Linking algebraic quantum groupoids and bi-
Galois objects

Definition 4.1.1. We call linking multiplier weak Hopf (*-)algebra a triple
(E,e, Ag) consisting of a non-degenerate linking (*-)algebra (E, e), together
with a coassociative u.e. (*-)homomorphism Ag : E — M(E®E) for which
Agp(e) =e®e and Ap(lp—e) = (1g—e)®(1g —e), and such that A = eFe
and D = (1g — e)E(1g — e), together with the restrictions of Ag, become
multiplier Hopf (*-)algebras.

We make some comments about this definition. First remark that the coas-
sociativity statement about Apr makes sense by the fact that the tensor
product of two u.e. maps is again u.e. Also, it is easily seen that Ag is in
fact u.e. with respect to (e®e)+ ((1g—e)®(1g —e)). Next, because EQ E
is a non-degenerate linking algebra between A®A and D® D, we know that
(e®e)M(E ® E)(e ®e) can be identified with M (A ® A) by Lemma 2.2.6,
so there is no ambiguity concerning the statement ‘restricting Ag to A’.
Finally, this definition is not very natural, since we do not define a linking
multiplier weak Hopf algebra as a multiplier weak Hopf algebra satisfying
certain properties. The reason for this is simple: there is as of yet no such
notion, although there is some work in progress on it. Instead of developing
it, we have rather opted for an ad hoc approach.

the *-algebraic context, since we can then consider equivalence of the more specialized
monoidal *-categories of *-representations in pre-Hilbert spaces. Since one wants all
natural transformations adapted to this *-structure, one has to do some more work.
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On the other hand, there are some obvious properties which one knows
should hold for any multiplier weak Hopf algebra. We collect them in the
following proposition. We continue to use Sweedler notation for the comul-
tiplication.

Proposition 4.1.2. Let (E,e) be a linking multiplier weak Hopf algebra.
e The comultiplication Ag has range in My.o(E © E).

o The map EQF — EQFE : 2®y — Ap(x)(1®y) restricts to bijections
Eij® Eji, — Eij ® By, (and similarly for all other maps of this form).

o There exists a unique functional
eg B —k,
called the co-unit, such that
(e ®p)AE(xi;) = x5 = (LE @eg)Ap(xi)) for xi; € Eyj.
Moreover, this counit satisfies

ep(wij - o3y) = ep(wij)ep () zij € Eij, xy € Ejy.

o There exists a unique map
Sp:E— E,
called the antipode, such that
Mg((Se®te)(Ap(zi)(1E @ 27;))) = ep(wij)r);,
for all x;; € Ejj, x;k € Eji, and
Mg((te ® SE)((2ij ® 1p)AR(2}))) = er(2)y)2i

for all x;; € E;;, 2", € E;,.. Moreover, this map will then be an anti-
J Jr 5k J
automorphism, and Sg(E;;) = Ej;.

Proof. Remark that Ag restricts to linear maps E;; — M (E;; ® E;;), which
we will denote as A;;.
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We have then that

Aij(Eij)(1®Ejk) = ij Elj )( ®(EE ))

Aij(
AU(EU) ( ( JJ)(l ®EJJ)) (1 ®Ejk)
AU(EU) (EJ (E ’ Ej ))
Aij(Eij) - (Ejj © Ejg)-
Now

Aj (En) (B © Evg) = App(Ei)(E2j © Eay)

for example € holds since E;; = Ejo - Eo1, hence

A (En)(Ey; © Ew) = Ap(Ep)A(En)(Ey; © Eyg)
S Ap(Ep)(Ey © Ea).

The u.e. property of Ag, together with this last fact, then implies that
Aij(Eyj) - (Ejj © Eji) = Eij © Eip,.

Hence Aj;(Eij)(1 ® Ej;) = Eij © Ej, and the maps stated in the second
item are all surJectlve

Now suppose that z;;, € E;; and x;k » € Ej are such that
DA (i) (1@, ,) = 0.
p

Taking an arbitrary z;; € Ej; and wy; € Ey;, we see that also

DA (zjiwijp) (1 @ 2y, ywis) = 0,
p

and hence
I p—
. % ® Ty ptog = 0,
p

by definition of a multiplier Hopf algebra. Multiplying the first leg to the
left with an arbitrary element of Ej;, and using that Ej; - Ej; = Ej;, we see
that

DUz wijp) @y ywrg =0

P
for an arbitrary z € E, hence

!
2 Tijp @y g = 0,
p
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by non-degeneracy of £'® E. A similar argument applied to the second leg
lets us conclude that

/
2 ZTijp @ Tijgp = 0
p

Hence all maps stated in the second item are bijective. Then by symmetry,
the first two items are proven.

We now construct the counit as in the third item. In fact, most of the work
has already been done in the first chapter. Indeed: the beginning of the
proof of Proposition 1.2.18 can be copied ad verbum, and lets us conclude
that there exists ep on B such that (ep ® tp)Ap = (tp ®ep)Ap = ip.
A similar map e¢ then exists on C' by symmetry, and we define eg as the
direct sum of the functionals ep, ec, ep and €4, where the first and last map
are the counits of resp. D and A.

Also the ‘bimodularity’ of g is then partially contained in the proof of
Proposition 1.2.18. The only thing which does not follow immediately is if
ep(be) = ep(b)ec(c) (and the symmetric counterpart with respect to A),
but this proof is in fact completely similar:

db(l)C(l)dIED (b(z)C(Q)) = d(bc)(l)dleD ((bC)(z))
= dbed’
db(l)cd/EB(b(z))
= dbyeqyd'ep(bayec(ce)),

which implies ep(bc) = ep(b)ec(c) for all b e B and ¢ € C by bijectivity of
the maps in the second item.

We move on to the antipode. Denote C' := Homp(pB, pD). We can identify
C with a subspace of C, letting C' act on B by right multiplication. We will
also write the action of C' on B as right multiplication: if z € C and be B,
we write

br =b-x:= x(b).

Then the proof of Proposition 1.2.18 can still be copied up to some point, to
conclude that we have a map Sg : B — C, such that we have db(l)SB(b(Q)) =
ep(b)d and (V'Sp(bn))) - b2y - a = ep(b)b'a. We want to show that Sp has
range in C.
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First remark that Homp(p B, pD) is a left A-module, by defining b(a-z) :=
(ba) - x for x € C. This extends the natural right A-module structure on C'.
Then for ce C, and b,V ,b" € B, we have

V() - Spb) = ("ct')Sp(b)
= (b'c) - (V'Sp(b))
= V' (c- (SpD))).

Hence (cb')-Sp(b) = c¢-(V'Sp(b)). Since C-B = A, we see that ASg(B) < C.
We want to show now that S4(a) - Sp(b) = Sp(ba). It is easy to see that
ba1ySalaz) = ea(a)b, since B = B - A. Hence, for d€ D,be B and a € A,
we compute

dbyan)Se(byae) = d(ba)q)Se((ba)z)
= ep(ba)d
€B(b)6A(a)d
e a(a)dby S (b))
= dbya)Salae))Se(be))-

From this, it follows that bSp(b'a) = bS4(a)Sp(b) for all bt € B and a € A,
using bijectivity of the maps of the second item. Hence Sa(a)Sp(b) =
Sp(ba). So we have in fact Sp(B) = Sp(B-A) = A-Sp(B) < C.
One can then also easily prove that Sg(d -b) = Sp(b)Sp(d), and that
SB(b(l))b(Q)a = 5B(b)a.

By similar reasonings, one constructs an antipode S¢ : C' — B, and it is
then not hard to show that the direct sum of Sp, S¢, Sp and Sp, which is a
map E — FE, is an anti-homomorphism, satisfying the antipode conditions
as in the fourth item.

Finally, we show that Sp is bijective. It is sufficient to show that Sp is
bijective. Suppose first that Sp(b) = 0. Multiplying to the left with Sc(c)
for some ¢ € C, we get that Sp(bc) = 0, hence bc = 0. Since ¢ was ar-
bitrary, the non-degeneracy of E easily implies that b = 0. So Sg is in-
jective. Now take an arbitrary ¢ € C, and choose ¢;, ¢, € C,b; € B such
that ¢ = >, ¢;bic,. Write SZl(cibi) = Zj ¢ijbij. Then ¢ = Zu Salcijbij)c,,
which equals 3, ; Sp(bij)Sc(cij)c;. Since Sp(B)D = Sp(B), we find that
c € Sp(B). Hence Sg is bijective.
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The uniqueness statements concerning the counit and antipode map are easy
to establish, and the proof will be omitted.
O

Definition 4.1.3. If A and D are two multiplier Hopf (*-)algebras, we call

linking multiplier weak Hopf (*-)algebra between A and D a linking multi-

plier weak Hopf (*-)algebra (E, e), together with (*-)isomorphisms Eag E A
A

and E11 q); D as multiplier Hopf (*-)algebras. When A and D are actually
D

(*-)algebraic quantum groups, we call (E,e) a linking (*-)algebraic quantum
groupoid between A and D.

When A and D are two multiplier Hopf (*-)algebras, we call them como-
noidally (*-)Morita equivalent if there exists a linking multiplier weak Hopf
(*-)algebra between them.

We will follow conventions as for linking Hopf algebras between, and not
explicitly write the ® 4 and ®p.

By definition, the algebras underlying two comonoidally Morita equivalent
multiplier Hopf algebras are non-degenerately Morita equivalent. Similarly
as for Hopf algebras, we then have the notion of an identity linking multiplier
weak Hopf algebra, the inverse of a linking multiplier weak Hopf algebra,
and the composition of two linking multiplier weak Hopf algebras. The first
two constructions are trivial. As for the construction of the composition,
let F1 and FEs be linking multiplier weak Hopf algebras between resp. FEao
and Fq1, and FE33 and Eos. Consider the associated 3x3-linking algebra
E = (Eij)ijef1,2,3- Then Ep, Ey and their composite linking algebra Fj3
can all be imbedded by an u.e. map into E. Then for example M(E 12)
will get sent to M (FE12). The same holds true for tensor products. Hence
if T12 € E12 and Y23 € E23, we can compose A12($12) and Agg(y23) inside
M(E), and obtain an element of M(FE13® E13) = M(F312 ® E312). Since

FE3 also equals F19 ® FEa3, and since all algebras have local units, it is not
Eao

difficult to see that

A3 : Ei3 > M(E130 Ei3) : 212 - y23 = Ar2(z12)A2s(y23)

extends to a well-defined map E319 — M(E312 ® E312). Similarly, one
constructs a map Agy : E321 — M(E321 © E321), and we can then com-
bine these with the comultiplications of Fq; and FEs3 to obtain a map
Ap, : E3 > M(E3 ® E3). We leave it to the reader to check that Ap,
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is a coassociative u.e. homomorphism, making F5 into a weak linking mul-
tiplier Hopf algebra between E71 and Fsg3.

In general, a (non-degenerate) linking algebra is determined by its C, B and
A-part, but not by its B and A-part. The situation is different for linking
multiplier weak Hopf algebras.

Proposition 4.1.4. Let E1 and Eo be two linking multiplier weak Hopf
algebras, and suppose there are linear isomorphisms ®o9 : A1 — As and
®19 : B] — Ba, such that ®12(ba) = ®12(b)Pa2(a) and

(P12 ® P12) (A, ()(1® a)) = Ap, (P12(0)) (1 ® P22(a))

for all b e Byi,a € Ay. Then Ei and Ey are isomorphic linking multiplier
weak Hopf algebras, by an isomorphism ® extending the @15 and Pos.

Proof. Define ®91 := Sp, 0 ®12 0 S¢, and
(1322 . D1 —> DQ :b-c—> @12(())@21(6).

Then an easy argument shows that the direct sum of the ®;; provides the
wanted isomorphism .
O]

One can also define the notion of a comonoidal right Morita module for a
multiplier Hopf algebra. This theory if developed in [22]. We will not be
concerned with this here, but we wish to remark that, unlike the theory
of comonoidal right Morita modules for Hopf algebras, there is an extra
condition to be imposed on right comonoidal Morita modules to be able to
perform the reflection technique of Proposition 1.2.18, which then pushes
the definition already further into the direction of a linking weak multiplier
Hopf algeba. It is shown further in [23] that there is a concrete duality be-
tween right comonoidal Morita modules for some algebraic quantum group,
and Galois objects for its dual. We will not prove this correspondence here,
but parts of it will appear in the ensuing discussion.

Dual to the notion of a linking weak multiplier Hopf algebra, we should
introduce the notion of a co-linking weak multiplier Hopf algebra. How-
ever, we will restrict ourselves to defining the basic constituent of this last
structure.
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Definition 4.1.5. Let A and D be two multiplier Hopf (*-)algebras. A bi-
(*)Galois object between A and D (or D-A-bi-(*-)Galois object) consists of
a triple (B,vp,ap) such that (B,~vp) is a left D-(*-)Galois object, (B, ap)
is a right A-(*-)Galois object, and vy and ag commute:

(vB®ta)ap = (Lt ®ap)yB-

Again, it is not clear whether Proposition 1.3.10 continues to hold in the
general setting of multiplier Hopf algebras. As mentioned in the beginning
of this chapter, we will however show in the following two sections that one
can construct bi-Galois objects from Galois objects for algebraic quantum
groups.

4.2 From Galois objects to linking algebraic quan-
tum groupoids

Given a right Galois object for an algebraic quantum group, we want to
construct from it a linking algebraic quantum groupoid (and, in particular,
a new algebraic quantum group, given as the upper left corner of the linking
algebraic quantum groupoid). For the rest of this section, A will always
denote an algebraic quantum group, and (B,ap) a right A-Galois object.
We will also continue to use the notation introduced in the previous chapter
without further comment.

Definition 4.2.1. Let B be a right A-Galois object. The restricted dual of
B is the vector space B = {¢p(-b) | b€ B} inside the dual B* of B.

‘We have shown

&>
|

{pp(b-) | be B}
= {¢p(-b) |be B}
{¢Yp(b-) | be B}

in Theorems 3.3.2 and 3.4.3, so as for algebraic quantum groups, all natural
definitions for a restricted dual give us the same space. We will denote the
elements of B (or B*) as wia, W)y, ..., or, if we consider an indexed family,
as wiy. The reason for this is that B will later be treated as the upper right
corner of a linking algebra.
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Let A be the dual of A. For the same reason, we will now denote elements
of A as waeg,wh,,.... As already mentioned in the previous chapter, we have
a left unital A-module structure on B, induced by ap, by putting

w2 - b = (1p @ war)(ap(b))

for be B and wog € A. This leads to a right A-module structure on the dual
B*, by putting
(w12 - w2)(b) = wia(waz - b)

for wio € B*,wo9 € A and be B.

Lemma 4.2.2. The right A- -module structure on B* restricts to a unital
right A-module structure on B.

Proof. Take b,b' € B and wos € A. Then

(YB(-b) -w2) () = walyp(bieb)bi))
(waz © S4)(YB(V'b(0))b(1))
= (¥B(-(Sz(w2) - )))(b'),

by using Proposition 3.3.1. By the surjectivity of Ty, 2 (see the discussion
after Definition 2.5.1, this will be a unital right A-module. O

The space B also carries a natural A*-valued k-bilinear form, determined
by . R
[wi2, iz ] 5(a) = (w12 @ wly)(Bala)),  wis,wiy € B,a€ A,

where B4 was defined in Proposition 3.1.2.

Proposition 4.2.3. Let B be a right A-Galois object, and |-, -] ; as above.
Then [-, -]3 is non- degenemte has A as its range, and is right A- linear,

i.e. for all wiz,w), € B and wa9 € A

[wiz, Wiy - waa ]z = [wiz, win] 5 - wao.

Proof. If wis = pp(b-), then

i (bal'Twy(al?)
pal(b (1)5A( ))wia (b))
(1/1,4( 2 (Wla (b)) b)) (@),

[wi2, w12 ] 5(a)
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using the second formula of Proposition 3.4.1. So the form takes values in
A. The surjectivity of the Galois map gives that the range of the form is
the whole of A. The faithfulness of the invariant functional on B shows that
the bracket is non-degenerate. Finally,

(Ba®ta)Aa(a))

= (w12 ®w112 ®(,U22) (LA ® OZA)ﬂA(a))

= [W127Wi2'w22]j(a)v

([wiz, Wizl -w2)(a) = (w2 @ Wiy ®wa)

—~~

where we have used Lemma 3.7.2. So the bracket is right A-linear.

O]

We use this bracket to construct a non-degenerate linking algebra which
has A as its lower right corner. First, we identify A € End;(Aj;) as left

multiplication operators, and also B € Hom g(ﬁ i B 1) as ‘left multiplication
operators’ (which will be faithful, for example by using the unitality of B as
a left A-module and then the fact that A has right local units). Then define

é = {[wlg, ]ﬁ | w1 € é} - Homg(ég,ﬁj),
where the inclusion at the end follows from Proposition 4.2.3, and put
D:=B-Cc EndA(BA)’

where the dot denotes composition. We group them together into the algebra

E’:z( )EEndﬁ(<§> ).

We will write elements of C' as wo1, and elements of D as wqy.

'
=y )

>

Lemma 4.2.4. The map
S§:l§—>6‘:w12—>[w12, ]13
s a bijection.

Proof. Suppose that [wia, -]; = 0. Then (w12 ® wiy)(Bala)) = 0 for all
a€ A and Wi, € B. By the surjectivity of the map

A@B—>B®B:a®b—>a[1]®a[2]b,

this means wy2(b) = 0 for all b € B, hence wia = 0.
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We can use the previous lemma to view C as functionals on C (which, we
recall, is nothing else but B°P).

Proposition 4.2.5. Let B be a right A-Galois object, and C as above.
There is a natural non-degenerate pairing

CxC —k: ([wi2, -15,077) = wi2(b).

Proof. By the previous lemma, the map is well-defined. The non-degeneracy
follows immediately from the faithfulness of ¢p. O

We write the pairing between ws; € C and c € C as wo1(c) of course. In
fact, it is easy to see then that C is just the space of functionals on C' of the
form ¢c (- c), with ¢ € C, hence coincides with the restricted dual of the left
Galois object C. So there is no conflict of notation.

Lemma 4.2.6. By composition of linear maps, the space C becomes a unital
left A-module, and then

(wa2 - w21)(€) = (wa2 @ war) (e (c)).

Proof. Take wsy € é, w12 € E, wog € A and a € A. Then by definition of the
external comultiplication 34 (see Definition 3.5.3), we get

(wo2 - wan)(wi2))(@) = (waz - [S5" (war), wiz] 3)(a)
w2 @wa1 @wi2)((ta ® Ba)Aa(a))
w22 @wa1 ®wi2)((ve @ tp)Bala))

(w22 ®@wa1) o v0)(wi2))(a),

(
(
(
(

which proves the formula

(wa2 - wa1)(c) = (w22 @wa1)(yc(c)).

Then the fact that C is a unital left A-module follows (for example) by
symmetry from Lemma 4.2.2.
O

By these results, it is clear that the space C can be identiﬁe(/i\ with the re-
stricted dual space for the left Galois object (C,v¢) as a left A-module, and
that the space B as constructed from the left Galois object (C,~¢), with



4.2 From Galois objects to linking quantum groupoids 129

all the extra structure, can also be identified with the one considered up to
now. So we can treat B and C, as resp. right and left A-module, on an
equal, symmetric footing.

0 0

Proposition 4.2.7. The couple (E ( 0 1-
A

)) s a non-degenerate linking

algebra between A and D.

Proof. We first show that EecE = E and E (1- e)E :AE . This follows from
the fact that A is idempotent (so_ A-A= A) that B is a unital right A-
module (which gives that B-A= B) from Proposition 4.2.3 and the remark
just before it (which shows that C-B= A) from Lemma 4.2.6 (which shows
that A-C = C) and from the definition of D (which gives B-C = D) From
these pieces, all the equalities E o ik = Elk are easily derived.

We still have to show that E is non-degenerate. But since E is faithfully

: B o . ~
represented as linear maps on < i ), it is easy to see that if x € E and

zy =0 for all y € E then x = 0. Similarly, E is faithfully represented as
linear maps on (C A) by right multiplication (since we have shown that the
roles of B and C' are symmetrical, or by a simple direct verification), and
thenerandyaﬁ—Ofor allyeEleadstom—O

O]

In particular, Disa non-degenerate algebra. However, using only that A
is non-degenerately Morita equivalent to lA), we can not say more, as there
is in general no reason to expect that the property of ‘having local units’ is
preserved under non-degenerate Morita equivalence. So the following lemma
shows in how well-behaving a situation we are.

Lemma 4.2.8. For any finite collection wi, € B there exists w11 € D with
w11 le = wliQ. Likewise, for any finite collection wh, € C there exists
w11 € D with why s win = why.

Proof. Fix a finite collection of w21, and write wly, = ¢p(-b;). We have to
prove that there exist w12 and w21 e C such that

2""12 Wzl Wiy = Wiy,
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This means that for any b € B and all ¢, we must have

D wih(boy)ws] (b)) es(bayzbi) = @r(bbi).
J

By using Proposition 3.4.1, our problem is thus equivalent to finding some
wi},wid € B such that for all 4 and for all b€ B,

> W (boy)wt3 (bioy) e a(bybiry) = wp(bbi).
J

Choose b' € B with ¢p(b') = 1. Put wi2 = pp(-b') and choose wi, € A such
that fh(bi(l))bi(o)b/ ® bi(Q)Az bi(oyb" ® by(1y for all i (using that A is a unital
left A-module, and that A has local units). Put wign) ® (wig2) - wiz) =

15 "j
2. Wiz @wyy. Then we have

D Wi (bo))wid (bio)ealbaybiny) = wialboybiqo))albaybiz))wia(biry)
7

w12(b(0ybi0)) A (b(1ybic1))
= ¢B (bbz)

The second statement follows by symmetry.

Corollary 4.2.9. The algebra D has local units.

By the discussion concerning composition and inverses of linking algebras
in section 2.2, we have the following corollary (which is easily verified).

Corollary 4.2.10. The natural projection

T:BQC — D : w2 Qua — wi2 - wal
A A
1s bijective.

We can use this observation to construct an antipode Sz and counit €z on

E (although we will show only later that they satisfy the expected proper-
ties with respect to a still to be deﬁne(i comliltiplication). First, note that
we have already defined a map Sz : B — C. Denote further by S% the

restriction of the transpose of S% to B. By the ‘invariance up to a scalar’
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of S% with respect to ¢p (Proposition 3.6.2 xi)), it is easy to see that S% is

a map B — B. By Lemma 4.2.4, we can also define
Sa C—>B: [wi2, - 15 — S%(wlg),
and then S% = S50 5p. In fact, we also have the expression

Sa(wa1)(b) = wa(S(b))

for Sz, which is easily verified.

Lemma 4.2.11. For wis € E,wgl e C and wog € ﬁ, we have
S i(wa1 - wi2) = Sp(wi2) - Sa(war),

Sgp(wiz - waa) = Sz(wa) - Sg(wia),

Sé(WQQ . (.L)21) = S@(Wzl) . SA\(WQQ).

Proof. Seeing ﬁ, Band C as functionals, using that the various compositions
are duals (= transposes) of the maps (4, ap and ¢, and that the antipodes
S3,85 and S5 are dual to the antipodes on A, B and C, the identities follow
from the fact that

BaoSa=(Sp®Sc)o BY,
apoSc = (Sc®Sa) oy

and
Yoo Sp = (Sa®Sp)oay,

where the first identity follows by Proposition 3.6.4.xiii), the second one
follows from the definition of ¢, and the third one follows from Proposition
3.6.2.vii).

Corollary 4.2.12. There is a well-defined anti-automorphism
Sﬁ . ﬁ — ﬁ L W12 W1 — S@(ng) . Sé(wlg).

Proof. This follows straightforwardly from Corollary 4.2.10 and the previous
lemmas. O
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We collect these antipodes together into a single anti-automorphism

S~ FE>FE: ( Wit w12 ) . ( Splwir) Salwar) )
L W21 w22 Sg(wiz)  Sz(wan)

We now construct a functional e B Put
Eézéak:wew(lg),

which makes sense since one can evaluate elements of B on multipliers of B,
using the specific form of the functionals in B. Put

€a: C—k: w1 — wo1(le).
Lemma 4.2.13. The following identities hold:
eglwia - wa) = eg(wiz)e z(wa2),
ea(waz - wa1) = € z(waz)ea(war),
€ 2(wa1 - wi2) = ea(war)eg(wiz).

Proof. This is immediately verified, using that the compositions inside E
which are used are duals of the maps y¢, ap and (34, all of which are unital

(when extended to the respective multiplier algebra).
O

By the previous lemma and Corollary 4.2.10, we can define a homomorphism
5ﬁ D>k W12 - wWo1 — 6@((.012)5@(&)21).
We can then also collect these €’s into the single map

w1l w12

EE:E—>/<::
wo1 W22

> — 515((,()11) + 86((,()21) + Eé(wlg) + €A(W22)~

We now gradually build a comultiplication on E.

Let (BOB)* be the dual of the vector space BOB. We can endow (BOB)*
with two right A-module structures: for w € (BOB)* and wes € A, we define

(W (1;@w)(b®V) = w(b® (w2 - '),
(w . (wgz @ lﬁ))(b@)bl) = w((o.)gz . b) @b,)
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Note that we can embed B @B inside (B ®B)* in the natural way, and that
this embedding respects both right A-module structures (Wh1ch on B ® B
are just the right module structures by multiplication with A on the right
on either the second or first leg).

Similarly, we can let C' act on the left of (B ® B)* (either on ‘the first or
second leg’), obtaining then elements of either (A ® B)* or (B® A)*. First
note that we have natural B-valued pairing

A x 5’ — B (a,wgl) —> a- w2 = w21(a[1])a[2].
Then we define the mentioned left action as
(W2 ®1p) w)(a®b) = w((a-wa) D),

(1 @w) - wi2)(b®a) = w(b® (a - wa)),
for we (B® B)*.

Definition 4.2.14. Let B be a right A-Galois object. The comultiplication

Ap onAB is the restriction of the transpose My : B* — (B ® B)* to the

space B.

We then denote
Ag(wi2) = wiga) ®wine)

for wig € B , using the same purely formal Sweedler notation as for multiplier
Hopf algebras. If woe € A, we then also denote

Ap(wiz) - (13 @wazr) =1 wign) ® (wigge) - w2),
and similarly for the other leg and for actions of C on the left. We note
then that B with this comultiplication will be an instance (and in fact the

most general instance) of a comonoidal Morita A-module, briefly mentioned
at the end of the previous section.

Lemma 4.2.15. The maps
BOA— (BOB)*: w2 @uwsn — Ag(wi2) - (15 ®waa),

BOA— (BOB)* :wia @z — Ag(wia) - (w2 ®15)
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induce bijections B ® A> B ® B. Also, the maps
COB— (AOB)* :wyn ®uiz — (w1 ® 15) - Ap(wia),
COB - (BOA) wy ®uwiz — (15@wn) - Ag(wr2)
induce bijections C ® B— ﬁ@ E, resp. Cc ® B— B ® A.
Proof. Note that
(Ap(wiz) - (15 @w))(b®V) = (w12 @w)(G(bAY)),

with G the Galois map for ap. Hence the first map in the Lemma coincides
with the restriction of the transpose G* of G, and hence is injective, by the
surjectivity of G. An easy calculation further shows that

G'(((-b) ®pala-)) = pp(-db) @ pp(al!-)
for b € B,a € A, by using Proposition 3.4.1. z) This shows that the range
of the first map in the lemma is exactly B ® A, by Corollary 3.5.2.
The bijectivity statement concerning the second map follows in a similar
fashion, using that also
BOA—->BOB:b®b — ap(b)(t ®1)
is a bijection.
For the third map, note that
(wa1 - wig(1)) ®wig(2))(a ®@b) = (w21 @wiz)(ap] @ afgd)-

Since the map

A@B—)C@B:@@b—)a[l]@)a[g]b

is also bijective (by Proposition 3.1.2), the third map is injective. It is easy
to calculate, using Proposition 3.4.174), that when wa; = Sz(pp(b-)) and
w2 = pp(b' ), then the third map sends

wa1 @wiz = (S3(palba)-))) @ @B(b/b(o) )

which proves the bijectivity associated with the third map (by bijectivity of
the Galois map). The proof of the bijectivity of the fourth map is entirely
similar.

O]
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By the previous lemma, and using further the unitality of C as a left A-
module and the fact that D = B - C, we can (and will) regard A » plwi2) as

an element of MLQ(B ® B).

We then also define

Ag:C— Mip(COO): Szwiz) = Spwisz) ® Spwisny)-

We may also interpret Az (wo1) as the functional

né@é’.

c®cd — wy(cd)

Lemma 4.2.16. The following identities hold:

Ag(wig - we) = Ag(wiz) - A z(w2e),
Ap(wag - wa1) = Az(w2e) - Ag(war),

A z(w21 - wi2) = Az(war) - Ag(wia),

where the multiplications are inside M(E'@ E)

Proof. Take wo € C. Then both (w21 ®15) - (Ap(wiz-we)) and (w21 ®15)-
Ap(wiz) - A z(wao) are inside A® B, and for the first identity, it is enough
to check if these are equal. For a € A and b € B, we compute:

((w21 ®15)A5(wi2)A 3(we2))(a ®@b)
(w21 - wiz(1)) - waz(1) @ wia(2) - waz(2))(a ®b)
(w21 - wiza)){aq))waz)(a) (Wi - waz(2)) (D)
(wa1 - wig(1))(a)) (wiae) - wa2(agz) -))(b)
war(aq)pwizaa) (@) wiae) (0) w2 (a@)ba))
= war(ayppwiz(ay1bo) w2z (a@)bay),

where the reader should check for himself that at every stage, the expressions
are well-covered. On the other hand,

(wo1 ®15) - (Ag(wiz - w2))(a®D)

wat (ap)) (w2 - wa2)(afzb)
wat (apwi2((az)0) 0y)w22)((af2;0) 1))
wat (apywiz((a2)(0)b(0))waz) (ag2)1yb(1))-
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This then equals the previous expression by Proposition 3.7.2.

The second identity and third identity are proven in an entirely similar way,
reducing each time to the coassociativity statements in Proposition 3.7.2.

O]

Hence, by Corollary 4.2.10 and Lemma 2.2.6, we get a well-defined homo-
morphism

Af) : ﬁ g M(ﬁ@ﬁ) W12 tWwWo1 — Aﬁ,(wlg) . Aé((x)gl).

We can then also combine the A’s into a homomorphism
Ap :E‘—)M(E’@E),
by taking their direct sum.

Proposition 4.2.17. Let B be a right A-Galois object. Then the triple

(E, ( 8 (1) ) ,Ap) is a linking multiplier weak Hopf algebra, with g as its

counit and Sz as its antipode.

Proof. We first show that A is coassociative. For

(LA ®A5) (w1 ®1p)Az(wr2)) (1;®1;Qw))(a®@bBY)
= (w21 ®15)Ap(wi2))(a @ bbg))waz (b))

/

= w21(&[1])w12(l1[2](bb(o)))w22( /(1))

/

= war(apy)wi2((apb)big) w22 (b))

= (Wa®1p®1p) (Az®p)(Agwi2)(1;®w2))(a®@b®),
which is easily seen to be sufficient to conclude that
(g ®Ap)As(wie) = (A ®15)Az(wi2) e M(EQEQE).

Then Ap is coassociative by an entirely similar argument, and A is coas-
sociative by definition (and a small further argument). All of this combined
shows that A is coassociative.

Now we have to check the bijectivity of a certain family of maps which are
given in Definition 4.1.1. We only check the bijectivity of the maps which
apply a comultiplication to the first leg, and then multiply to the right with
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the second leg (i.e., those in the first group of eight morphisms in Definition
4.1.1). Now the bijectivity of those morphisms involving only é, B and A
follow by entirely similar methods as (or some even directly by) in Lemma
4.2.15. Only three maps remain then. For example, we have to show that

COD-COC  wy@un — Ap(wa) - (15 ®wn)

is bijective. But

As(O)(150D) = (Ax(C)(150B)(1500)
= (C®B)(1;00)
= C®D,

proving surjectivity. On the other hand, if
ZAG(W&) (15 @uwiy) =0,
7

then ‘ ‘
Z Ag(wy) - (15 ® (Wi -wi2)) =0,

for all wyg € B. Hence

Zwél ® (Wlil ‘w12) =0
i

for all wyg € B , which implies
2 W%l ® Wlil =0,
i

proving injectivity. In an entirely similar fashion, the two remaining maps
can be shown to be bijective.

Finally, it is trivial to see that €z will be the counit for this linking multiplier
weak Hopf algebra. Also the proof that Sz is the antipode is straightforward
enough to safely omit the proof.

O

Now we construct on the multiplier Hopf algebra D a non-zero left invariant
functional, showing that it is in fact an algebraic quantum group. Again,
this is a non-trivial procedure, as even for unital linking algebras, there is
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for example in general no canonical way to transport some functional on one
corner to a functional on the other corner. We use the method of proof from
[23], which is less cumbersome than the original construction of [19].

Definition-Proposition 4.2.18. Let B be a right A-Galois object. Denote
by oz B — B* the map such that

((05)(w12))(b) = wia(SE(b)d5Y).

Then oz has range in B. We call it the modular automorphism of B with
respect to ¢ 3.

Proof. This is easily verified: if wis = pp(-b), then
(05w2) V) = op(SEW)-05'b)
= vapp(V'op' SE° (),

using the relative invariance of ¢, and the invariance of dp with respect to
s2. O

Proposition 4.2.19. The functional
Pp - D—k:wip-wa — @ 3(wa1 - o5(wi2))
is well-defined, and determines a non-zero left invariant functional on D.
Proof. We first verify that
0wz - wa2) = g z(wi2) - 0 5(w22).
For b € A, we have

(0p(wiz - wa))(b) = (w12 @wn)(as(SE(b)6E")
= (w12 @w)((SE(b))d5") ® (S7(b1))d,"))
= (op(wi2) - 03(w22)) (D),

using the appropriate identities from the previous chapter. Then from this,
we conclude that

op(wiz-wa) -wiz) = @j(wa -og(wiz)-oz(w))

= (w2 w - og(wi2))

oplwiz - (w2 - wi2)),
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which by Corollary 4.2.10 shows that ¢ is well-defined.

We now show that ¢z is left invariant. We first prove another identity,
namely

Ap(og(wiz)) = (S ®o5)Ap(wi2)

Again, this is straightforward to verify:

Ag(og(w)(b@V) = wia(SH(bY)s5")
= w12( SE(B)SE®)s5")
= Ap(wi2)(SE(b) @ S(Y)i5")

(52 ®05)Ap(wi2) (b @)
Then we compute for wi; = wio - woq € D that

(Pﬁ(wll(Q))wélwll(l)wlm

= ¢ (W21(2) A(w12(2)))W§1w12(1)W21(1)W’12
= <P,a(w21 ( (W12))(2) (‘S%(W/QI)'( (W12))(1))W21( )wiz
= 902(%1 (B(W12))(2)) (‘S%(WIQI)

SC(Wzl )%1(3)(‘7 (w12))(1))w21(1)wiz
= @al(war)(05(w12) ()55 (SF(wh)

-Sa(war(2)) (warsy (o (W12)))(2))W21(1)w/12
= %0,3(“121(3) (W12))S§ (52 (why) - S@(W21(2)))W21(1)Wi2
= pi(wa(sop(wiz))wy
= SOA(W210§(W12))W21W12

¢p(wiz - war)wywis
(

! !
= ©p w11)whs * Way,

S

Scl(wzl(z))wm(l)wiz

where we have twice used the antipode property for Ss. This proves that
¢p s a left invariant functional.

O]

Corollary 4.2.20. Let B be a right AA—Galoz's object. Then the associated
linking multiplier weak Hopf algebra (E,e) is a linking algebraic quantum
groupoid.
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4.3 Bi-Galois objects from linking algebraic quan-
tum groupoids

In this section, we construct from the datum of a linking algebraic quantum
group between a bi-Galois object. In fact, this is done by a duality argument
which is completely similar to the construction of the dual of an algebraic
quantum group in [93]. Therefore, we will be rather brief, and not provide
all proofs.

Let (E,e) be a linking algebraic quantum groupoid (which we write as a
dual already to have compatibility with previous notations). Then on E we
can construct the functionals

-~ w w
opsBoi (00 00 ) = ot +ostom
and
-~ w w
vps Bk (02 ) S pon) +uplen)

The same techniques as used in the third section of [92] or the previous chap-
ter, will let us conclude that ¢z and 5 possess modular automorphisms
(see also [23]). In fact, these will then split up into bijections E‘ij — Eij, for
which we then continue to use the obvious notation.

More trivially, ¢z and 9z are linked by a modular element: if we define

5@ = ( gD gg ), then QDE((;E) = 1!1@

Then define E to be the restricted dual of £ w.r.t. ¢p or Pp, i.e. the space of
functionals of the form ¢z (-w) with w € E (where it doesn’t matter which
invariant functional we choose, or where we put the element inside). As in
the fourth section of [93], we will obtain that dual to the comultiplication on
E’, there exists a non-degenerate algebra structure on E, and that dual to

the multiplication on E , there will exist a u.e. coassociative homomorphism
Ap — Mi2(EQE).

Now it is further easily checked that FE will be a direct sum algebra of
non-degenerate algebras Ey1, E12, E21 and FEag, where Eyjj = {95 (-wji) |
wij; € Eji}, and that, denoting by p;; = 1g,; € M(E), we have Ap(p;;) =
(pin ® p1j) + (pi2 ® p2j). Then as for co-linking weak Hopf algebras, Ap
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splits into u.u.e. homomorphisms Af}- : Eij — Mi2(Ey, © Eyj), and we can
identify (Fi1,Al;) with (D,Ap), and (B, A2,) with (A, A4). We then
also use the further notation as introduced for co-linking weak Hopf algebras
after Definition 1.3.7. We easily find that ap : B — M;.1(B © A) is then
a (reduced) right coaction, and it will make B into an A-Galois object, for
example by observing that by definition of the multiplication in B and the
coaction of A on B, the Galois map G for ap is the dual (i.e, the restricted
transpose) of the map

BOA—>BOB :win®@uwxn — Ag(wis)(we ®1),

which we know to be bijective by Proposition 4.1.2. (We used here of course
that the transpose of the inverse of this last map again sends B ® A into
B ® B, but this is also something which is straightforward to establish.)

Similarly, the map yp : B — Mi.2(D®B) turns B into a left D-Galois object,
and since it is easily verified that vp and g commute, we have constructed
from E a bi-Galois object. Furthermore, if (E,e) was the linking algebraic
quantum groupoid constructed from a right A-Galois object B, then it is
straightforward to verify that (B, ap) coincides with the Galois object as
constructed from (E ,€). So combining the construction of a bi-Galois object
from a linking algebraic quantum group together with the construction of
a linking algebraic quantum groupoid from a right Galois object, we have
proven half of the following Proposition.

Proposition 4.3.1. Let A be an algebraic quantum group, and B a right A-
Galois object. Then there exists an algebraic quantum group D and coaction
v of D on B making (B,vp,ap) into a bi-Galois object. Moreover, if Dy
s another algebraic quantum group, and ’y}g a coaction of D1 on B, making
(B,'y}g,aB) into a Galois object, then there exists an isomorphism

$p1: D' - D

such that
(®p @ t)VE = VB-

We will not give a full proof of the uniqueness statement. Suffice it to say
that one can also construct directly from a bi-Galois object a linking alge-
braic quantum groupoid, where now the multiplications between the B and
C' are not considered by composition of linear maps on some vector space,
but directly by dualizing the external comultiplications of A and D. Then
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by using Proposition 4.1.4, we see that necessarily our newly constructed
linking quantum groupoid must be isomorphic to the one constructed solely
from the right A-Galois object (B, ap).

We end with a generalization of a formula, known as Radford’s formula,
which is well-known for Hopf algebras with integrals (and more generally,
for algebraic quantum groups). It gives a formula for the fourth power of
the antipode in terms of the modular elements.

Proposition 4.3.2. Let B be a right Galois object, and (E, e) its associated
linking algebraic quantum groupoid. Then

Sh(b) = (65 - (655'005) - 551)
forbe B.

Proof. Recall that SE(b) = 65 - op(b) for b € B, by definition of S. Now
since S% is uniquely determined as the transpose of the dual of the antipode
on ]EAC, which is unique, we should also have a similar formula for S% starting
from the left D-Galois object (B,~p). By analogy with the case of algebraic
quantum groups, we see that this formula must be

S3(6) = (o)~ (1)) - 071,

since ¥ p must be the 551—invariant functional for vp by a uniqueness argu-
ment. Since o p(b) = dpop(b)dg" for be B, and since B is a A-D-bimodule,
combining our formulas leads to

Sh(6) = (67 - (95b0p) - 351)

for all be B.

4.4 Concerning “-structures

Suppose now again that A is a *-algebraic quantum group, and B a right *-
Galois object. We first put a *-structure on the associated linking algebraic
quantum groupoid (FE, e), making it into a linking multiplier weak Hopf *-
algebra. We will be rather brief in our discussion, leaving easy verifications
to the reader.
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For wis € B, define wiy € C* as the functional
wiz(e) := wi2(Sc(e)*).

Then we will have wj, € 6’, the *-operation then becoming bijective. We
then define a *-operation from Cto B simply as the inverse of the one from
B to C. Then (w1 - wiz)* = wk, - wi, and (wig - wa)* = wiy - wy and
(wa2 - wo1)* = w3 - wiy. By Corollary 4.2.10, we conclude that there is a
well-defined *-operation on D by putting

(w12 - wo1)™ := wiy - wis.

Then the direct sum of the *-operations makes E into a *_algebra, and

moreover, Ap is *-preserving. Hence (E, e) is a linking multiplier weak
Hopf *-algebra.

We now make the dual bi-Galois object (B, vp, ap) into a bi-*-Galois object
(and in particular, make D into a multiplier Hopf *-algebra). Define a *-
operation on D by the following dualization process:

wit(d*) := (Sp(wi)*)(d).

Then it is straightforward to see that D becomes a *-algebra, and that Ap
and yp will be *-preserving. Hence (B,~yp,ap) will be a A-D-bi-*-Galois
object.

We show now that the property of being a *-algebraic quantum group is
preserved under reflection along a Galois object, i.e., that the above con-
structed multiplier Hopf *-algebra D is in fact a *-algebraic quantum group.

We will show this by constructing a positive right invariant functional ¥)p on
D. In fact, let g be a positive ap-invariant functional on B (see Corollary
3.9.5). Then, since for any right invariant functional ¥p on D, we have
that (¥p ® t)yp produces an ap-invariant functional on B, we can, by
the ‘uniqueness’ of an ap-invariant functional on B, choose % p in such a
way that (¢p ® t)yp coincides with ¢¥p. Now take d € D and b € B with
@p(0*b) = 1. Write d®b as Y ; 7p(b;)(1®b;), then d*d = 3, .(tp®pp)((1p®
(6))15((8:)*b;)(Lp ®F))). Applying ¥p, we get

bo(@d) = Y en() H)vs(ib)
>0,
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since the matrices (a;;) = (pp((6))*b})) and (b; ;) = (¥B((b:)*b;)) are both
positive definite. Hence

Theorem 4.4.1. If B is a right *-Galois object for a *-algebraic quantum
group A, then the reflected algebraic quantum group (D,Ap) also has the
structure of a *-algebraic quantum group.

We can then also complete the discussion in section 3.9 concerning diagonal-
izability. For let B be a right *-Galois object. Then by Radford’s formula,
Proposition 4.3.2, S* is a composition of left and right multiplication with
dp and its inverse, and left and right multiplication with ¢z or ¢ 7 and their

inverses. Since B=A-B - 13, all these operations are diagonalizable, hence
the same is true of 5’%. Since S% is self-adjoint, also S% is diagonalizable,
and then the same is true for op, since op(b) = S%(é; - b) for all b € B.

Since 5123, op and left and right multiplication with §5 commute, they are all
simultaneously diagonalizable. Finally, since (p is positive, one easily sees
that op must have positive eigenvalues, and then the same is also true of .5%.

4.5 An example

In this section, we present a family of examples of Galois objects for a cer-
tain class of algebraic quantum groups of compact type. While these last
are of course special types of Hopf algebras, and thus could be treated solely
in the framework of [71], we emphasize here the approach by duality (thus
passing to algebraic quantum groups of discrete type). Another reason for
including these examples is that the reflection along these Galois objects
really produce a new algebraic quantum group of compact type. This is
somewhat surprising, as the examples we present are infinite-dimensional
generalizations of the Taft algebras, for which it is know that one always ob-
tains an isomorphic copy of the original Hopf algebra when reflecting along
a Galois object.

The mentioned class of algebraic quantum groups of compact type which we
will use is the following. These examples can be found in [93] and [99], but
we slightly generalize the construction to fit them both in one family.

Definition 4.5.1. Let n > 1, m = 1 be natural numbers, and A € k such
that X is a primitive n-th root of unity. Let AY™ be the unital algebra over
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k generated by elements a, a~' and b, and with defining relations: a™' is the
mmwverse of a, ab = Aba and b = 0. Then we can define a comultiplication
on AV determined on the generators by

Aa) = a®a,

AD)=b®a™ +1®0b.
This makes (At\L’m7 A) an algebraic quantum group of compact type.

To prove that this comultiplication is indeed well-defined, we only have to
use the well-known fact that (s +t)! = s' 4+ ¢! when s,t are variables satisfy-
ing the commutation st = gts with ¢ a primitive I-th root of unity (see e.g.
[52]). Now (A;’l, A) is the example in [99], and with the further relation
a™ = 1, this reduces to the two-generator Taft algebras. The Hopf algebra
(A;Q, A) is isomorphic with the example constructed in [93].

The left invariant functional ¢ of (A4, Ax) = (AY™, A) is defined by
©(aPb?) = 0p.00g.n—1, peZ,0< qg<n.

As A is infinite-dimensional, the dual A is necessarily of discrete type and
not compact, i.e. it is a genuine multiplier Hopf algebra. This is a difference
with the Taft algebras, which are self-dual. Remark that there can still be
defined a pairing between A and itself, but it will be degenerate.

In [62] the Galois objects for the Taft algebras were classified. It provides
the motivation for the following construction. Fix (4,A4) = (A}™,A) as
above, and assume moreover that A is a primitive n-th root of unity and
m and n are coprime. The condition ‘A" is a primitive n-th root of unity’
follows from this assumption.

Definition 4.5.2. Take u€ k. Let B = B/T\LIT be the unital algebra generated
by z, 2" and y, with the defining relations: =1 is the inverse of x, xy =
Ayx and y? = px™". A right coaction ap of A on B is defined on the
generators by

ap(r) =r®a,
ap(y) =y®a™ +1®Db.

It is straightforward to show that this has a well-defined extension to the
whole of B, and that this is a coaction (since the coaction property only has
to be checked on generators).
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Proposition 4.5.3. (B, ag) is a right A-Galois object.

Proof. First of all, we have to see if B is not trivial. We follow a standard
procedure. Let V be a vector space over k£ which has a basis of vectors of
the form e, , with p € Z and 0 < ¢ < n. Define operators 2’ and y' by

' epg = epr1,g forallpeZ,0<gq<n,
y/ " €pg = AP €p,q+1 lfp (<] Z’O < q<n-— 1’
Y epn—1 = pA P €pinmo ifpeZ.

Then it is easy to see that 2’ is invertible and that 'y’ = A\y'2’. Also:
y'" - _ )\fp(nflfq)yllw epm_i
= p\PlmD\pya Eptnm.0
— M)\—p(n—l—q))\—p)\—pqeernm,q
= /L)‘_pneernm,q
= pz™ ey,
This gives us a non-trivial representation of B. Moreover, it is easy to see

that this representation is faithful.

Define by 64 : A —» B°? ® B the homomorphism generated by
Ba(a) = ()P @z,
Bad) = —(yz ™P 2" +1®y.

This is well-defined: for example, we have

Ba®)" = ((=yz™")")P@2™" + (1@z™")
_ ((_1)n)\mn(n—1)/2 + 1)#(1 ® J:mn)
= 0,

using that A™ is a primitive root of unity. Denoting By = (Spor ®1)B4 with
Spop the canonical map B°? — B, and writing G4(c) = ¢l @ ¢l for c € 4,
it is easy to compute that

Z(O)Z(lgl] ® Z(1£2] =1 ® z,

(2] 21 _
clle ) ®c 1y = 1®c

for all z € {x,y, 27!} and c € {a,b,a™'}, and hence for all z € B,c e A. This
shows that the coaction ap makes B into a Galois object. O
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The extension k € B will be cleft (see e.g. Definition 2.2.3. in [76]), by the
comodule isomorphism ¥ : B > A : 2Py? — aPb?, pe Z and 0 < ¢ < n.
The associated scalar-valued 2-cocycle w is given by w(a?b? ® a"b*) = 0,
except for ¢ = s = 0, where it is 1, and when g + s = n, in which case it
equals pA~ . (We were pointed out by the referee of [19] that our Hopf
algebra is... pointed, so that any Galois object is automatically cleft (see

[45]).)

We determine the extra structure occurring in this example. First note that
we have shown that the elements of the form zPy? withpe Zand 0 < g <n
form a basis. Then we have

ep(aPy?) = 0g,n—10p,0 for pe”Z,0<q<n,
V(aPy?) = Ogn-10pma-—m A" for peZ,0<q<n,
dp — x(nfl)m

op(x) = \la, Si(z) = =

S%(y) = Y Oply) = A"y,

by some easy computations (where we have used notation as in the previ-
ous chapter). Of course, the fact that the integrals on B are ‘the same’ as
the ones A (after applying Up) is immediate from the fact that A and B
coincide as right A-comodules.

Now we determine the associated algebraic quantum group (D, Ap). Note
that we could determine the structure with the help of the cocycle, but we
wish to use directly the Galois object itself, since this is easier. In particular,
we exploit the pairing between (D, Ap) and its dual (D, Ap).

We first give a heuristic reasoning. We determine the algebra structure of
. We need a description of the dual A of AY™. Tt has a basis consisting of

expressions e,d? withp e Z and 0 < ¢ < n, wheree, € Aandd e M (A) such
that epe, = 6pgep, dep = €pmd and d* = 0. With ¢ = 3, A\7Fe; € M(A),
the comultiplication is determined by

ep) = Z et @ ep—t,
t

Asz(d)=d®c+1®d.
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Now the left action of A on B is given by

es 2Pyl = Opg mq TPYY,
d-zPy? = (4 xPyd1, 0<qg<mn,
d-aP = 0,

where Cy = ((11:):\ﬂ;q)) Na=1) - Consider the operators gs and h acting on the

right of B by

Pyt.gs = 5p,fs Py,
Pyl -h = CyaP ™™yl 0<qg<n-—1,
zP-h = 0.

Then it is easy to see that h and gs commute with the left action of A.
We see that h - gs = gstm - h, that gsg: = 05495 and that A = 0. The
span of gsh? will form our algebra D. Now denote by up4 the elements
in D such that (upq,e,d®*) = 6,04, and denote u = u_19, v = ugp,o and
w = up,1. Then we have yp(x) = u®x and vp(y) = v®yY+w®2™ by using
the action of D. Since this has to commute with ap, we find that v = 1.
Using that y" = pz™" we find that p + w"™ = pu™", and using zy = Ayz,
we get uw = Awu. Furthermore, the fact that x is invertible gives that
u is invertible. This then completely determines the structure of D. The
coalgebra structure is determined by the usual

AC(u) =uQu,
Ac(w) =w@u™ +1Qw.
We can now make things exact.

Proposition 4.5.4. Let D be the unital algebra generated by three elements
w,u”! and w, with defining relations: u™' is the inverse of u, uw = A\wu
and p-1+w™ = pu™. Then D is not trivial. We can define a unital
multiplicative comultiplication Ap on D, given on the generators by

Ap(u) = u®u,
Ap(w) =w®u™ +1®w,

making it an algebraic quantum group of compact type. It has a left coaction
v on B determined by

18(2) =u@uw,
1B(Y) =10y +wz™,
making it a A-D-bi-Galois object.
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Proof. 1t is easy to see that Ap and vp can be extended, that Ap is coas-
sociative and yp a coaction, and that vp commutes with the right coaction
of A. Since now D is already a bialgebra, it follows from the general theory
of Hopf-Galois extensions ([71]) that if v5 can be shown to make B a left
D-Galois object, then automatically D will be a Hopf algebra, hence the
reflected algebraic quantum group of A.

We can again show this by explicitly constructing a homomorphism Sp :
D — B ® B°P, where we then also write ﬂD =(t® SBop)ﬁD and ﬂD( ) =
A=21 @ =1, On generators it is given by 8p(u) = z @ 2~ and Bp(w) =
yR®x~™ —1®@uyx~". Again the same chore shows that it has a well-defined
extension to D, and that it provides the good inverse for the Galois map
associated with . This concludes the proof. O

Remarks: 1. If the characteristic of k is zero, then D will not be isomorphic
to any A;L:’m/ when p # 0. For in AZ:’m/, the only group-like elements are
powers of a. Thus any isomorphism would send u to a power a' of a. But
then p(a'™™ — 1) would have to be an n-th power in A, hence, dividing out
by b, also in k[a,a~!]. This is impossible.

2. As we have remarked, this example is a cocycle (double) twist
construction by a cocycle w. We have already given the 2-cocycle as a
function on A ® A. But it is also natural to see it as a multiplier of A ® A
Then we have the expression

n—1
1
=1®1 dT@d" "1
} ® +qug) (A5 A7) g1+ (A5 A ) g1 ® .

with the notation for the dual as before, and where (a; z); denotes the z-
shifted factorial ([52]). Now consider the algebra generated by ¢ and d as
the fiber at \™ of the field of algebras on kg with the fiber in z generated
by c;,d, with c, invertible, d? = 0 and c,d, = zd,c,, and with the extra
relation ¢® = 1 if z is a primitive k-th root of unity. Then we can formally
write

w=1®1+pu- lim ;(dz®cz+1®dz)”,
Zz—A™ (Z; Z)nfl
where we take a limit over points which are not roots of unity. In this
way, since ¢, d generate a finite-dimensional 2-generator Taft algebra inside
M(A), we find back a part of the cocycles of [62]. In fact, any of those
cocycles should give a cocycle inside M (A ® A) hence a cocycle functional
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on A® A. We have however not carried out the computations in this general
case. We remark however that this is a well-known technique to construct
cocycle twists (and thus (doubly) cocycle twisted quantum groups), namely
considering a 2-cocycle on a substructure, and then lifting this (in a trivial
way) to the whole object (see e.g. [33]).

3. There does not seem to be any straightforward modification of
the two-generator Taft algebra Galois objects that provides a Galois object
for the dual of some AY™. It would be interesting to see if such non-trivial
Galois objects exist.
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Chapter 5

Preliminaries on von
Neumann algebras

In this chapter, we recall some basic notions concerning von Neumann al-
gebras and their weight theory. Most of this material can be found in the
standard reference works [83] and [84] (see also [80]).

5.1 von Neumann algebras

We will call a unital *-algebra N a W*-algebra or von Neumann algebra
if there exists a Hilbert space s and a faithful unital *-homomorphism
7w : N — B(), such that the image is closed in the o-weak topology. By
the von Neumann bicommutant theorem, this last condition is equivalent
with asking that m(N) equals its bicommutant: w(N)" = w(N), where for a
subset S € B(), we denote

S"'={x e B(#) | xs = sx for all s€ S}.

We thus neglect the common distinction by which a von Neumann algebra
should be seen as a ‘concrete W*-algebra’ (i.e., a W*-algebra with some fixed
faithful *-representation as above), and conversely W*-algebras as ‘abstract
von Neumann algebras’. For the moment, we will always assume that a von
Neumann algebra is represented on some fixed Hilbert space .77, and we
will drop the notation .

We write the cone of positive elements in a von Neumann algebra N as

NT. We identify its predual N, with the space of normal (= o-weakly
continuous) functionals on it. It is canonically determined by the fact that

153
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(N4)* = N as Banach spaces, and then the o-weak topology on N is pre-
cisely the weak™-topology of NV as a dual space of V.. We denote the positive
cone of the predual by N;7. When Ny € B(J4) and Ny € B(53) are two
(concretely represented) von Neumann algebras, we will denote their spatial
tensor product (N7 ® N3)” as Ny ® No € B(JA4 ® #4). Then by Tomita’s
commutation theorem, we have (N7 ® Na)' = Ni ® NJ.

We will regularly need to slice with maps: if N1, No and N3 are von Neumann
algebras, and ® : No — N3 a normal completely positive map, then

t®P: N1 ® Ny — N1 (O N3

extends uniquely to a normal completely positive map N1 ® No — N1 ® N3,
which we still denote by ¢ ® P.

5.2 Weights on von Neumann algebras

Definition 5.2.1. Let N be a von Neumann algebra. A weight ¢ on N is
a semi-linear' map
o:NT —[0,+0].

It is called

1. semi-finite, if the left ideal A, := {x € N | p(z*x) < oo} of square
integrable elements is o-weakly dense in N,

2. faithful, if p(z*z) = 0 implies x=0,
3. normal, if p(z) = lim; p(x;) for any increasing bounded net v; € N T

with ©x = sup x;.

We abbreviate the terminology ‘normal semi-finite faithful weight’ to ‘nsf
weight’.

!By a semi-linear map ¢ : N* — [0, +0], we mean a map such that p(z +y) =
©(z) + ¢(y) for all z,y € N*, such that o(rz) = rp(z) for r e Rf and 0 # z € N*, and
such that ¢(0) = 0.
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We introduce some further notation. If N is a von Neumann algebra, and
¢ a weight on N, we denote by

My ={re N |p(x) <o}
the space of positive integrable elements, and by
My =N Ny

the space of integrable elements. Then ., is the absolutely convex hull of
///J , and one can extend ¢ from //lJ to a linear functional .#, — C. We
will also write ¢ for this extension.

The following definitions and theorems are very important in the theory of
weights on von Neumann algebras (=non-commutative integration theory).

Definition 5.2.2. Let N be a von Neumann algebra, and ¢ an nsf weight
on N. The Hilbert space completion of A, with respect to the inner product

(@, e = p(y*r)

is denoted as L*(N, ). The inclusion map A, — L*(N, ) is denoted as
A, and is called the GNS map? for ¢. There exists a unique unital normal
*-representation m, of N on Z?(N, ), called the GNS representation, such
that

To(2)Ap(y) = Ap(zy)
forze N andy e N
The combined triple (L*(N, ), Ay, ) is called the GNS construction for
(N, ).
The GNS construction is a canonical example of a semi-cyclic representation:

Definition 5.2.3. Let N be a von Neumann algebra. A triple (7, \,m) is
called a semi-cyclic representation for N when J€ is a Hilbert space, A is
a linear map N — F with &/ S N a left ideal of N, and 7 is a normal
unital *-representation of N on €, such that A has dense range and

m(x)A(y) = A(zy) forallze N,ye N

2(GNS is short for Gelfand, Naimark and Segal
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When there exists an nsf weight ¢ on N such that N = A, and

A(@),Ay)) = ly*z)  forallz,ye A
then we call (A, A, ) a semi-cyclic representation for ¢.

When the representation part of a semi-cyclic representation (J,A, ) is
clear from the context, we also call A a semi-cyclic representation (for )

on J.

The following Definition-Proposition recalls the main parts of the celebrated
Tomita-Takesaki theorem.

Definition-Proposition 5.2.4. Let N be a von Neumann algebra, ¢ an
nsf weight on N. Then the anti-linear map

750 : Ap(Ap 0 %*) — Ay (A5 0 %*) tAp(z) = Ap(x™)

is closable to a (possibly unbounded) anti-linear map T, which is then in-
volutive (i.e. domain and range of 1, are equal, and ’Z:Z equals the identity
on its domain).

LetT, = JsOV}p/Q be the polar decomposition of T,,. Then the positive operator
V., is called the modular operator for ¢, while the anti-unitary J, is called
the modular conjugation for . They satisfy the commutation relation

JoViJ, = Vi

The modular operator induces an R-parametrized family of of *-automor-
phisms on N, called the modular automorphism group of ¢, by the formula

ngp(ac)V;“ = (0] (x)).

Then for x € N, we have o (x) € N, for any t € R, with
Ap(0f () = VEA(2).

The modular conjugation induces a canonical *-isomorphism of NP with
o(N)', given as
z? — Jomy(x)* Jo.
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Definition 5.2.5. Let N be a von Neumann algebra, and ¢ an nsf weight
on N. The opposite weight of ¢ is the nsf weight ©°P on the opposite von
Neumann algebra N°P, given by

©P(zP) = ¢(x) forze NT.

We next recall Connes’ cocycle derivative theorem from the fundamental
paper [16], but we make some preliminary definitions.

Definition 5.2.6. Let N be a von Neumann algebra. A one-parametergroup
of automorphisms on N is an R-parametrized set {o}} of *-automorphisms
of N, such that o5,y = 050 0y, and such that t — oy is point-c-weakly
continuous.

For example, when ¢ is an nsf weight on N, the associated modular auto-
morphism group of is a one-parametergroup of automorphisms on N.

Definition 5.2.7. Let N be a von Neumann algebra, and oy a one-parameter-
group of automorphisms on N. A 1-cocycle for oy is an R-parametrized set
{w¢} of unitaries in N, such that usy; = us-os(ut), and such that s — ug is
o-weakly continuous.

When ot and ¢ are two one-parametergroups of automorphisms on N, we
call Ty cocycle equivalent (or outer equivalent) with oy when there exists a
1-cocycle u; for oy such that 7(x) = uy - oy(x) - uf for all t € R.

Theorem 5.2.8. Let N be a von Neumann algebra, and ¢ an nsf weight on
N.

If ¥ is another nsf weight on N, then af) is cocycle equivalent with of by
a canonically determined 1-cocycle uy, which is denoted as (2 : Do), and
which is called the cocycle derivative of ¥ with respect to .

Conversely, to any 1-cocycle uy for of there is uniquely associated an nsf
weight 1 such that uy = (P9 : D).

The following proposition shows, among other things, that a modular con-
jugation is really associated with N instead of with an associated nsf weight
. To be able to formulate the proposition rigourously, we introduce some
further terminology, whcih will however not be used later on. For ¢ an nsf
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weight on a von Neumann algebra N, we denote by .Z2(N, ¢). the positive
cone of Z?(N, ), which is the closure of the set of elements of the form
A}O/ 4A¢(az*:1;) with x € A, n A (one can show that this expression then
makes sense).

Proposition 5.2.9. Let N be a von Neumann algebra, and ¢ and ¢ two
nsf weights on N. Then there exists a unique unitary

Upy : LHN,p) > LN, 1),

such that Uy ymo(2)Us,, = my(z) for all € N and Up L’ (N, )1 =

L2(N,v) ;. Moreover, we then have that Uppdp = JpUp -

By the previous proposition, we can in fact canonically identify all GNS
spaces of a von Neumann algebra N with a single Hilbert space .Z?(N),
in such a way that all GNS representations get transformed into a same
representation 7y, and all modular conjugations get transformed into the
same anti-unitary Jy. It is then convenient to transport all structure of
some Z2(N, ) to £%(N). In particular, we transport A, to a map Ny —
Z£?(N), which, by abuse of notation and terminology, we will still denote
by Ay, and call the GNS map for ¢. We call the triple (£?(N), Ay, 7n)
the standard GNS construction for (N, ). We will suppress the notation
wn whenever N is not already identified with some concrete set of operators.
We call the normal unital anti-*-representation

Oy : N — B(Z*(N)) : x — Jyz*Jy
the right GNS representation of N. We also denote
Oy :N — N € B(Z*(N)) : x — Jyz*Jy

the canonical anti-*-automorphism from N to N’. If ¢ is an nsf weight on
N, we write ¢ for the nsf weight ¢ o Cy' on N

We will further identify .Z2(N°P) with #?(N), by choosing an nsf weight
¢ on N and defining a unitary U which sends Ager(2°P) with x € ACF
to JoAy(z*). (One can show that this is independent of the chosen nsf
weight ¢.) Since N°P and N’ can be canonically identified by the map
z°? — Jyz*Jy, and since under this isomorphism ¢°P corresponds to ¢/,
we can and will also identify .Z2(N’) with .Z%(N), sending A (Cn(z)) to
JoMAy(x*) for z € A, Finally, we write AZ” for the map A o Cy.
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5.3 Analytic extensions of one-parametergroups

Definition 5.3.1. Let N be a von Neumann algebra, and oy a one-parameter-
group of automorphisms on N. An element x € N is called analytic with
respect to o, when for all w € Ny, the function t — w(oy(x)) is analytic.

If x € N is analytic for o, there exists for each z € C a unique element
o.(x) € N such that, for all w € Ny, the compler number w(o,(x)) is the
value of the analytic extension of t — w(o¢(x)) at the point z. The function
2z — 0,(x) is called the analytic extension of ¢t — oy(x).3

For each one-parametergroup of automorphisms, the set of associated ana-
lytic elements is always o-weakly dense in N. In fact, one can easily con-
struct analytic elements by what is called smoothing. For example, if z € N,

define o
Ty = \/HJ e*"tQUt(ac)dt,
T J—oo

which can be seen as the unique element for which

() = \/Z F: e~ (o4 () )t

for all w € N,. Then z,, is analytic for oy, with

+00
o.(xpn) = \/Zf efn(tfz)rzat(x)dt,
—a0

and moreover x,, — x in the o-weak topology. (It would be more elegant to
use arbitrary kernels in .Z!(R) whose Fourier transform goes to zero quickly
enough at infinity, but these concrete forms are sufficient.)

One can show that if z,y € N are analytic for oy, then also xy and z* are
analytic for o, with

ox(zy) = ox(x)o=(y),
()" = oz(x®).

We can thus speak about the *-algebra of analytic elements.

3Each map o, as defined on analytic elements, is in fact closable (in the (o-weak)-(o-
weak)-topology), and we then denote the closure by the same symbol. This extension will
however rarely be used.
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Definition 5.3.2. Let N be a von Neumann algebra, and ¢ an nsf weight on
N. We call Tomita *-algebra of ¢ (inside N ) the *-algebra F, of analytic
elements © for o for which of(x) is square integrable for each z € C.

The Tomita *-algebra of an nsf weight ¢ on a von Neumann algebra N is still
o-weakly dense: for example, applying the smoothing process to a square
integrable element produces elements in the Tomita *-algebra. We also note
that the Tomita *-algebra of an nsf weight really is a sub-*-algebra of N. We
further mention that we will also view it as a subspace of #?(NN) by applying
A, to it (and then call it the Tomita *-algebra inside £*(N)). This last
viewpoint is really the original one, as there is also a stand-alone definition
of a Tomita *-algebra. We will only give the definition with respect to an nsf
weight (in which case we are again free to work either in the algebra itself
or in the associated Hilbert space), and refer to [84], Definition 2.1 for the
general definition (which we will only need at one point).

Definition 5.3.3. Let N be a von Neumann algebra, and @ an nsf weight
on N. A Tomita *-algebra 2 for ¢ is a sub-*-algebra of 7,, invariant under
all 0f, such that A is o-weakly dense in N.

One can show then that 2 is a o-strong-norm core? for A, (see Theorem
VI.1.26 and Proposition VIIL.3.15 of [84]).

We now state the most important property of the modular one-parametergroup
with regard to the non-tracial character of an arbitrary nsf weight.

Proposition 5.3.4. (KMS property) Let ¢ be an nsf weight on a von Neu-
mann algebra N. If z € Ny 0 A and y € T, then

o(20%,(y)) = p(y2).

Proposition 5.3.5. Let ¢ be an nsf weight on a von Neumann algebra N .
If ye T, then o2 (y) € N, N AN for all z € C, and

InAL(Y) = Ap(oF,(1)").
When z € A, and y is analytic for of , then zy € N, and

Ay(zy) = JNJZ‘;2 ()" INAp(2).

4we recall that a core for a closed map between topological vector spaces is a subspace
of the domain of the map, such that the graph of the restriction of the map to this subspace
is dense in the graph of the map.
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We will also need the following proposition (see Theorem VII.2.5 of [84]).

Proposition 5.3.6. Let N be a von Neumann algebra, and ¢ an nsf weight
on N. Then if v € AN, and z € N, we have

2Ny (x) = Ay (2).
Conversely, if z€ N', ¢ € ZL%(N) and
zN,(z) = x€

for all x € A, then z € Ny and & = Ay (2).

5.4 The Connes-Sauvageot tensor product

Most of the discussion in the following two sections is taken from Section
IX.3 of [84].

Let m be a unital normal *-representation of a von Neumann algebra N on
a Hilbert space 7. Let ¢ be an nsf weight on N. A vector £ € S is called
right bounded w.r.t. ¢ and m if the map

Ap(ANG) = I Ay(x) — T(2)€

is bounded, in which case we denote its closure by R™¥(§) (or R if 7 and ¢
are fixed). We denote by .77 the space of right bounded vectors. Similarly,
if # is a unital normal right *-representation of IV, a vector £ € 7 is called
left bounded w.r.t. ¢ if the map

AP (A) = A INAy(2™) — O(x)

is bounded, in which case we denote its closure by L#(€) (or L¢ if 6 and ¢
are fixed). We denote by J#, the space of left bounded vectors for 6. Re-
mark that if 7/ = 6 o Cy is the associated left *-representation of N’, then
the right bounded vectors with respect to ¢’ are exactly the left bounded
vectors with respect to .

Now let IV be a von Neumann algebra, and ¢ an arbitrary nsf weight on N.
If 4 is a unital normal right *-representation of NV on a Hilbert space ¢, and
7 a unital normal *-representation of N on a Hilbert space ¢, we denote by
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G 9Qn A (or simply 4 ®.7 when 0 and 7 are clear) their Connes-Sauvageot
%) ¥

tensor product with respect to m, 6 and . It is the Hilbert space closure of
the algebraic tensor product of ¢, and . with respect to the scalar product

& @&, m@mpcs = (m(Ly Le, )62, m2),

modulo vectors of norm zero. In fact, we could as well start with the alge-
braic tensor product of ¥, and .7, since the image of this tensor product
in the previous Hilbert space will be dense. On elementary tensors of the
last space, we can give a different form of the scalar product, namely

& ®&,meny = O, Re,)é,m).

The image of an elementary tensor in 4 ® ¢ will then be denoted by the
@

same symbol, with ® replaced by &, or simply ® 5
@ ®

If then z € §(N) and y € 7(N)’, and n € I, also yn € , 7, and one can

form an operator x ® y on ¢ ® 5, uniquely determined by the fact that
@ @

(z@y)(E®n) = (x£) ® (yn)
® @ @
for €9 and ne 7.

In the beginning of the eleventh chapter, we will need the notion of a fibre
product of two von Neumann algebras over a third von Neumann algebra.
This is a von Neumann algebraic version of an algebraic construction already
commented upon at the end of the first chapter. Namely, suppose L, X and
Y are three unital algebras, s;, a unital anti-homomorphism from L to X,
and t7 a unital homomorphism from L to Y. Then X can be seen as a
right (resp. left) L-module by considering the left (resp. right) L°P-module
structure on X induced by left (resp. right) multiplication composed with
sr, while Y can be seen as a left (resp. right) L-module by left (resp. right)
multiplication composed with ¢;. Then X %) Y is still an L-L-bimodule,

and we can consider the central elements (X @ Y)%. These will then form
L

an algebra under factor-wise multiplication. It is this construction which is

°In fact, there is also a weight-independent definition of the Connes-Sauvageot tensor
product, and all weight-dependent constructions can be canonically identified with it,
preserving all further structure.
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‘generalized’ to the von Neumann algebra setting.

So let L, Ny and Ny be von Neumann algebras, s a normal unital anti-*-

homomorphism from L to N7, and ¢ a normal unital *~-homomorphism from

L to No. Let m; be a unital normal left *-representation of IV; on a Hilbert

space 7. Then by restricting to L via s and ¢, we also obtain a normal

right L-representation 6 on J# and a normal left L-representation 7w on J73.

Let i be an arbitrary nsf weight on L, and let 4 ® 5% be the Connes-
o

Sauvageot tensor product. Then since (L) € m1(N1) and 7(L) S ma(Na),
we can represent the commutants of 71(Ny) and 7o (Na) on JA4 ® 5. We
m

then define the von Neumann algebra N7 s#; Ny as the von Neumann alge-
L
bra consisting of operators on 4 ® 5% which commute elementwise with
m
the images of these commutants. One can show that Nj g%; Na, as a von

Neumann algebra, is in fact independent of the choices made along the way,
and only depends on s and t. It is called the fibre product of N1 and No
over L.

One can then perform on these fibre products most slice constructions as for
ordinary tensor products (which is the case L = C). For example, one can
slice with functionals and nsf weights, one can slice with *-homomorphisms
if they are well-behaved with respect to the base algebra L, one can slice
with operator valued weights if they are well-behaved with respect to the
base algebra, etc. Such a slice is then denoted for example as ¢ Szt —. We

refer to the introduction of [30] for some more concrete information. We will
in fact only need this construction in a very special case, for which these
slice constructions greatly simplify.

5.5 Morita theory for von Neumann algebras and
weights

Definition 5.5.1. Let M and P be von Neumann algebras. A P-M-corres-
pondence (7,7, 0) is a triple consisting of a Hilbert space € with a normal
unital *-representation ™ of P and a normal unital anti-*-representation
0 of M, such that 7(P) € 6(M)". We call (5,7,0) a P-M-equivalence
correspondence when 7 and 6 are faithful, and 6(M)' = =(P).
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When the maps 7 and 6 are clear from the context, we denote the corres-
pondence just by 7.

On the algebraic side, these correspond to the equivalence bimodules of
Definition 1.1.11. The following structure then corresponds to the linking
algebras of Definition 1.1.9.

Definition 5.5.2. A linking von Neumann algebra consists of a couple
(Q,e), where Q is a von Neumann algebra and e is a (self-adjoint) pro-
jection in Q, such that both e and (1g—e) are full® (i.e. the two-sided ideals
generated by e and (1g — e) both have Q as their o-weak closure, i.e. their
central support is 1g).

If M and P are two von Neumann algebras, we call a quadruple (Q, e, ®pr, Pp)
a linking von Neumann algebra between M and P if (Q,e) is a linking
algebra and ®pr is a *-isomorphism from M to eQe, and ®p from P to

(1o —e)Q(1g —e).

If M is a von Neumann algebra, 01 and 02 two unital normal right anti-*-

representations of M on Hilbert spaces 71 and 73, we call (61 ®62)(M)" <

B(( ;il >), together with the projection onto %5, the linking von Neumann
2

algebra between the right representations 61 and 0s.

It can be shown that a linking von Neumann algebra between right repre-
sentations really is a linking von Neumann algebra.

Q21 Qa2
P N . . o .
as well as o M ) and we identify each @);; with its part in Q. We also

Qll Q12 )

We will further write a linking von Neumann algebra (Q, e) as (

keep the same conventions as in the algebraic setting (for example, the one
following Definition 1.1.9).

As in the purely algebraic case, there is a one-to-one correspondence be-
tween (isomorphism classes of) equivalence correspondences and (isomor-
phism classes of) linking von Neumann algebras between.

Definition 5.5.3. Let M and P be von Neumann algebras, and (A, 7,0) an
P-M -equivalence bimodule. Then we call the linking von Neumann algebra

5Note that the fullness here differs from the purely algebraical definition, since we use
the o-weak topology on Q.
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between 0 and the standard right GNS-representation for M the linking von
Neumann algebra (between) associated to . We then denote its canonical

representation on ( L2M) > by 7 (or 7TQ).

The fact that the above @ is a linking von Neumann algebra (between) of
course requires proof, but the main ingredients are provided (for example)
in section IX.3 of [84]. Also, it is better to see ) as an abstract von Neu-
mann algebra, and 72 as a concrete representation, for reasons which will
soon become clear.

To produce an equivalence correspondence from a linking von Neumann al-
gebra (between), we need to introduce some further terminology.

Definition 5.5.4. Let (Q,e) be a linking von Neumann algebra between von
Neumann algebras M and P. If pp is a weight on P and @p a weight on
M, the balanced weight op ® @ar is the weight

T11 X12

To1 o ) — op(x11) + em(x22).

@p@goM:QM[o,m]:(

If (Q,e) is a linking von Neumann algebra between von Neumann algebras
M and P, and s and pp nsf weights on respectively M and P, then their
balanced weight will again be nsf. Denote

LQuy) = mq(ei)bg(e)) L2(Q),
where e; = 1g — e and ez = e. Then one can write

| L%(Qu) Z*(Q12)
2@ - paigl) o) )

where the expression on the right is just a direct sum of Hilbert spaces,
written as a direct sum to indicate how @ acts on it from the left. Now

€ Ny — 32(6222) 18— Ay (2)

will determine a semi-cyclic representation for ¢, and we can identify
L?(M) with £%(Q22) in this way. One can show that this identification
is in fact independent of ¢j;. In the same way, Z?(P) can be identified
with £2(Q11). Then £%(Q12), which we will also denote as .Z%(N) (and

L2(Qa1) as £2%(0)), is a P-M-equivalence-correspondence in a natural way,
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which we call the P-M -equivalence correspondence associated to (Q,e).

When @ was in fact the linking von Neumann algebra associated to an
equivalence correspondence .7, then #?(Q12) and # can be canonically
identified as equivalence correspondences. For this, one proves that, for some
fixed nsf weights ¢); and ¢p on resp. M and P, the space of elements L,
where £ € ¢ ranges over the left bounded vectors for ¢ in 2, is precisely
N p@pn NQ12, 0 that an identification is provided by sending Ay @, (Le)
to & (which is in fact independent of the choice of weights). Conversely, the
linking von Neumann algebra associated to the equivalence correspondence
of a linking von Neumann algebra @) will be @ itself, represented on the

2%(Q12)
( XQ(QZ) )—part of £%(Q).

In the following, we will then always identify an equivalence correspondence
S with its part inside £2(Q).

We introduce some further notation concerning the GNS representation for
a linking von Neumann algebra. We will denote by 77, the (faithful) repre-
sentation of Q;x, as maps .£%(Qy;) — L2(Qi;) for i, j,k € {1,2}. We denote
2
§2Eg;§ ), and by mg the standard
representation of Q on .#%(Q). We will use these representation symbols
as much as possible to avoid confusion, but we will suppress them when
it would muddle up formulas. The GNS map of pp @ ), restricted to
Nop@on N Qij, Will be denoted by Ay (when pp and @) are clear from the
context). We use the similar notation for the splitting of the standard right
representation g, the 7 in 922 now denoting the row on which is acted, and

0% being the right representation of @;; as maps from £?(Qy;) to D%Q(ij).

by Wé the representation of ) on (

We now comment on the modular structure of an nsf balanced weight on a
linking von Neumann algebra. First, we will have that szp@‘p \; restricts to
one-parametergroups of unitaries on each £2(Q;;), which on the -Z?(Q;;)-
parts coincide with the one-parametergroups of unitaries associated to the
modular operator of pg,;. We call the restriction of Vi pap,, to £%(Q12)
the spatial derivative of 1) by ¢’, and denote it by %’,.

Second, the modular conjugation Jg restricts to the £ 2(Q4)-parts, coincid-
ing there with the modular conjugations Jg,,, while it sends the £%(Q12)-
part to the #2(Q21)-part by an anti-unitary Jy, and vice versa, the £2(Qa1)-
part to the Z2(Q12)-part via an anti-unitary Jo, so that JoJy and JyJo
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both equal the identity. This allows us to canonically identify .#?(Q21) with

£2(Q12), identifying Jn& with € for £ € Z?(Q12).

The following proposition characterizes spatial derivatives with respect to a
fixed weight.

Proposition 5.5.5. Let M be a von Neumann algebra, and 7€ a P-M -
equivalence correspondence, denoting the associated right M -representation
by 0. Let oy be an nsf weight on M. Suppose V% is a one-parametergroup
of unitaries on S such that V@0(z)V~" = (o™ (x)) for all x € M. Then

there exists a unique nsf weight pp on P such that (if,” )it = Vit
M

Proof. This follows from Theorem IX.3.11, Proposition IX.3.10.(i) and Propo-
sition IX.3.8.(i) in [84]. O

If 7 is a P-M-equivalence correspondence, we can also be more specific
about the map Ay (relative to fixed nsf weights on P and M): it has a
core consisting of elements L where { € 7 = £?(Q12) is left bounded

and in the domain of (iDL,P)l/Q. On such elements, we then have Ao (Lf) =
M

J %(i’#)l/ 2¢, where J, denotes the canonical conjugation ¢ — 7
M

12

£2(Q21). In fact, this observation is used to construct the nsf weight ¢p as
in the above proposition (see Lemma IX.3.12 in [84]).

We introduce some further terminology. When 47 is a Hilbert space, denote

by C,» the canonical anti-*-isomorphism B(J#) — B(.), which sends z
to J yCE*J;igl

Definition 5.5.6. Let M be a von Neumann algebra. Then we call
(XQ(M)JTM’GM)

the identity equivalence correspondence.

If A is a P-M (-equivalence) correspondence (', m,0), we call the M-P (-
equivalence) correspondence (,C x 08,C 4 o) the conjugate (or also, in
the case of equivalence correspondences, the inverse) (equivalence) corres-
pondence of F.
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If My, My and Ms are three von Neumann algebras, (741,71,01) an M;-
Ms-equivalence correspondence and (3,79, 02) a My-Ms-equivalence cor-
respondence, and ¢ an nsf weight on Ms, then we call

(O @ A, m ()L 1Q6:())
S @ @

the composite Ms-M1-equivalence correspondence of 76 and 6.

One can show that the composite equivalence correspondence is a genuine
equivalence correspondence between Mz and M.

Inside a linking von Neumann algebra, the identification of .#2(Q21) with
Z2%(Q12) by (a part of) the modular conjugation, is then in fact an identi-
fication of #?(Q21) with the conjugate correspondence of .Z2(Q12).

One has corresponding definitions for linking von Neumann algebras.

Definition 5.5.7. Let M be a von Neumann algebra. Then we call (M ®
M5(C), 1 ®ea2) the identity linking von Neumann algebra (between M and

itself ).

If (Q, e) is a linking von Neumann algebra (between), then we call (Q,1g—e)
the inverse linking von Neumann algebra (between).

If M1, My and Ms are three von Neumann algebras, Q1 a linking von Neu-
mann algebra between Mo and My, and Q2 a linking von Neumann algebra
between M3 and My, we call

- 32(621,12)
Q= (05,,, ®0, ®03,,)M) € B(| 22(0) )
L%(Q2.21)

the associated 3% 3-linking von Neumann algebra, and denote this particular
Z%(Q1,12)

representation on L2(Msy) by 77%. We call the von Neumann alge-
L*(Q221)

bra constituted by the corners of this 3x 3-linking von Neumann algebra the

composite linking von Neumann algebra (between) of Q2 and Q1.

We mention that, in the notation of the above definition, we have a canon-
ical isomorphism £?(Q13) = £%(Q12) ® L%(Q23), for any nsf weight ¢ on
©
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~ C:?ll Q12 6:213
M, where we of course write () = @21 Q22 @23 }. So the corres-
Q31 Q32 Qs3

pondence between equivalence correspondences and linking von Neumann
algebras preserves composition.

For further reference, we restate part of the preceding definition in a differ-
ent way.

Lemma 5.5.8. Let My, My and Ms be von Neumann algebras. Let 7 be
an Mi-Ms-equivalence correspondence, and let 76 be an Ms-Ms-equivalence
correspondence. Then the commutant of the direct sum right representation
is the composite of the linking von Neumann algebra between £*(Ms) and

o and the one between 4 and L*(M>).

We end with the following definitions.

Definition 5.5.9. If M and P are two von Neumann algebras, we call them
W#*-Morita equivalent, if there exists a linking von Neumann algebra between
them, or equivalently, if there exists a P-M -equivalence correspondence.

By the operations on equivalence correspondences, introduced in Definition
5.5.6, one sees that this defines an equivalence relation between von Neu-
mann algebras. Further, we have that isomorphism classes of equivalence
correspondences again provide morphisms in a certain large groupoid with
von Neumann algebras as objects, the identity equivalence correspondences
providing units, and the inverse of an equivalence correspondence giving the
inverse of a morphism.

We also briefly introduce the corresponding notions in the C*-algebra con-
text.

Definition 5.5.10. A linking C*-algebra is a couple (E,e) consisting of
a C*-algebra E and a (self-adjoint) projection e € M(E) such that e and
1g —e are full (i.e. EeE and E(1g —e)E are norm-dense in E ).

When A and D are two C*-algebras, a linking C*-algebra between A and
D is a linking C*-algebra (E,e) with fived *-isomorphisms between A and
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eEe, and D and (1g —e)E(1lg —e).

If A and D are two C*-algebras between which there exists a linking C*-
algebra, we call them C*-Morita equivalent.

In the literature, C*-Morita equivalence is called strong Morita equivalence
(cf. [67]), but we will use the above term for conformity.

5.6 Operator valued weights

The following definitions and results are obtained from sections IX.4 of [84]
and section 10 of [31].

We recall the definition of the extended positive cone of a von Neumann
algebra (Def. IX.4.4 in [84]).

Definition 5.6.1. Let N be a von Neumann algebra. The extended positive
cone N of N consists of all semi-linear maps N,;= — [0, +o0] which are
lower semi-continuous w.r.t. the norm-topology on N,.

If z € NT*t we write the evaluation of x in w € NJ as w(z). We will
always identify N with its part inside N T,

The following is Definition I1X.4.12 of [84].

Definition 5.6.2. Let Ng S N be a unital normal inclusion of von Neumann
algebras. An operator-valued weight T' from N to Ny (or Np-valued weight
on N) is a semi-linear map

T - N+ _ (NO)Jr,ext

such that
T(y*zy) =y*T(x)y  VYre NT,ye N

Operator-valued weights are natural generalizations of weights, which cor-
respond to the case Ny = C (identifying C with C - 15). Then if T is an
operator-valued weight from N to Ny, we can define sets A7, ,//lfr and A
in completely the same way as for ordinary weights. Also the notions of a
‘semi-finite’ or ‘faithful” operator valued weight are immediately clear. As
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for the normalcy of an operator valued weight: we call an operator valued
weight T from N to Ny normal if

w(T(z)) = lillgnw(T(:z:i))

for all w € N, and z;,z € N* for which z; is a bounded increasing net
with = supx;. A (normal) operator-valued weight for which T'(1y) = 1n;,
is called a (normal) conditional expectation; it then automatically satisfies

Mrp = N.

One can always extend an nsf operator valued weight T' from N to Ny
uniquely to a semi-linear map N+t — N>, This extension of T, which
we denote by the same symbol, will then be a surjective map. This also
provides us with a straightforward way of composing nsf operator valued
weights: when Ng € N € Ns are unital normal inclusions of von Neumann
algebras, To an nsf N-valued weight on Ny and T an nsf Ny-valued weight
on NN, we obtain an nsf Ng-valued weight T o T5 on Ny by

(T o To)(x) := T(T2(x)) for z € N, .

In particular, we can compose an nsf operator valued weight T from Np to
Ny with an nsf weight on Ny to obtain an nsf weight on Nj.

Proposition 5.6.3. Let Ng € N be a normal unital inclusion of von Neu-
mann algebras. Let T : N — Ny be an nsf Nyo-valued weight on N. Then
for any nsf weight i on Ny, we have that ¢ := poT is an nsf weight on N,
whose modular one-parametergroup of restricts to o}’ on Ny:

of (mn(z)) = mn (ol (z)) for all x € Ny.
Moreover, the restriction of of of to Nj n N is independent of the choice

of weight u on Ny, and is called the modular one-parametergroup of 7' on
NinN.

Now let Ny € N be a normal unital inclusion of von Neumann algebras, and
T an nsf Ng-valued weight on N. Let u be a fixed nsf weight on Ny, and
denote by ¢ the nsf weight poT. Consider x € 47. Then zy € .4, when
y € A, and

Au(y) = Ay (zy)

extends from A, (.4,) to a bounded operator £%(Ny) — Z?(N), which we
will denote by
Ar(z) : L%(No) —» L%(N),
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following the notations of Theorem 10.6 of [31]. Its adjoint is then deter-
mined by

A (@)*Ap(y) = Au(T(@*y)),  forye N, A N
One can show that
Ar s N — B(ZL*(No), £*(N))
is independent of the choice of p.

There is a slight ambiguity of notation now, as A,(x) denotes either an el-
ement of 2 or a linear operator C — .. This ambiguity is easily resolved
by identifying the Hilbert spaces B(C, #’) and ¢ by sending x to x- 1, and
we will make this identification when necessary without further comment.

The theory of operator-valued weights provides a framework in which the
tensor products of nsf weights can be easily treated.

Definition 5.6.4. Let N1 and Ny be von Neumann algebras, ¢1 an nsf
weight on N1 and @o an nsf weight on Na. Denote by (1 ® p2) the map
(N1®No)t — (N1) T which sends x € (N1®N2)™ to the element (1Qp2)(x)
such that for we (N1)§, we have

w((t @ @2)(2)) = pa((w @) (2))-
Then (1®p2) is an nsf operator valued weight from N1®Ns to N1(= N1®1)).
Similarly, (1 ®t) can be made sense of as an operator valued weight (N1 ®

No)t — (No) ™ and then ps 0 (p1 @ 1) = @10 (L ® o). We denote this
composition as o1 Q s, and call it the tensor product weight of 1 and 3.

One can show that in the situation of the previous definition, 45, ® A, is
a core for Ay ge,, and that

Aoy @Ay, 2 Ny © Ny — XQ(NI) ®$2(N2) :

TRy — A901 (.’L“) ®A902 (y)

extends to a semi-cyclic representation for @1 ® @o. This provides an iden-
tification of £%(N1 ® No) with .£2?(N1) ® £?(Ny) as N1 ® Na-equivalence
correspondences, which is in fact independent of the choice of weights. In
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the following, we will always identify these two spaces without further com-
ment. We further note that the modular conjugation then becomes the
tensor product of the respective modular conjugations.

We will also need the following lemma at a certain point.

Lemma 5.6.5. Let M be a von Neumann subalgebra of B() for some
Hilbert space 7€, containing the identity operator. If there exists a faithful
normal conditional expectation € : B(#) — M, then M is atomic, i.e. a von
Neumann algebraic direct sum of type I-factors: there exists an orthogonal
central partition p; of the unity of M, such that each p;M is a type I-factor
(i.e. *-isomorphic to B(J) for some Hilbert space J;).

Proof. This is a special situation of Exercise IX.4.1 (parts d) and e)) in [84].
O

5.7 The basic construction

Remark: The discussion here is borrowed from the paper [20]. We are un-
aware of this material being treated explicitly in the literature, although we
strongly believe that these results, which are generalizations of very well-
known ones in particular cases (see e.g. [49], Proposition 4.4.1.(ii)) are known
to the experts.

Definition 5.7.1. Let Ny € N be a unital normal inclusion of von Neumann
algebras. Let On be the right GNS representation of N, and denote No =
On(No)'. Then it is immediate that

Nog € N S N,.

We call this string of inclusions (or also just the von Neumann algebra Na)
the basic construction for the inclusion Ny € N. [terating this construction,
we obtain a sequence

NoS NS NyCSN3C ...,
called the (Jones) tower associated with Ny € N.

Let Ng € N be a unital normal inclusion of von Neumann algebras. Then
Z2(N) is an Ng-Ng-correspondence by restricting 7 and 6y to Ng. We
note that it is isomorphic to its conjugate correspondence by the map
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Jy2(nyJN. Let further p be an nsf weight on No. If No € N € Nj is the

basic construction, then by the construction of Ny and the theory of section

5.5, we have a canonical unitary Na-Na-bimodule map from £%(N)®-£2(N)
o

to Z2(N3), and hence also from .Z?(N) ® £%(N) to £%(Nz). We want to
m

show now that in the presence of an Ny-valued nsf weight on IV, this unitary
can be expressed in terms of N (Theorem 5.7.5).7

In the following, we fix a unital normal inclusion of von Neumann algebras
Ny € N, an nsf weight p on Ny, and an nsf operator valued weight T from N
to Ng. We denote by ¢ the nsf weight poT on N, and by Ny € N € N5 the
basic construction. The operators of the form Ap(x)Ar(y)*, with z,y € A7,
will generate a o-weakly dense sub-*-algebra of Ny, and then there exists
a unique N-valued nsf weight T» on No, such that Ap(z)Ar(y)* € 471, for
x,y € A7, with

To(Ar(z)Ar(y)*) = zy*

(cf. [31], Theorem 10.7). We call T, the basic construction for T, and also

write this as

Nog € N © Ns.
T Ts

Iterating this construction, we obtain a sequence

Noc NS Npobc Nygc...,
T T> T3 Ty

called the tower construction for T'. We then also call ¢ = poT', w92 = polh,
... the tower construction for yu w.r.t. T.

We remark that o will then equal the unique nsf weight which satisfies

(gﬁ? =V, (cf. section 10 of [31]).

We prove a lemma about interchanging the analytic continuation of a mod-
ular one-parametergroup with an operator valued weight.

Lemma 5.7.2. Let QQ be the linking algebra between the normal right No-
representations on £?*(N) and £*(Ny), and consider the balanced weight
0o = p2@p on Q. Let x € N be such that x is analytic for of and o¥(x) €
N7 for all z € C. Then Ar(z) is analytic for of®, with oi®(Ar(x)) =
Ar(cZ(x)) for all z € C.

"In fact, we will not show that the constructed unitary equals the previous one, as we
will not need to know this, but in any case, it is not difficult to prove.
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Proof. First remark that Ap(z) € Q12, for example by [31], Lemma 10.6.(i).
Choose y € 4}, and u,v € A, with v in the Tomita algebra .7, < NN for ¢.
Denote by w the normal functional

W= WA (), dn o (0) I A(u) € B(ZL*(No), ZL*(N))s,

and denote f,(2) := w(Ap(cZ(z))) for z € C. Then

fu(2) INo s (0) TN Mg (0 (2)y), Ap(u))

(@) Ap(yv), Ap(u)),

and so f, is analytic. Moreover, if z = r 4+ is with r,s € R, then since
B _ (4P
Oy = (Jt )\No’

o) = Ko@)V Ap(yv), V5 Ap(u))]
= [KAp(of(2)a” (), JNGZ/Q( 0% (V) In D (07, (1))
= [Ar(ef @)V, " Au(y), Vo Inog s (v) InAp(u))],

and so we can conclude, by the Phragmén-Lindelof principle, that the mod-
ulus of f,, is bounded on every horizontal strip S by M, g|w|, where M, s
is a number depending only on x and the chosen strip S. The same is of
course true for linear combinations of such w, and since these span a dense
subspace of B(.Z?(Ny), £*(N))«, we get that z — Ap(of(z)) is bounded on
compact sets. But then this function is analytic (for example by condition
A.1.(i74) in the appendix of [84]). Since o, is implemented by Vievi
and VZA7(z)V," = Ap(of (2)), the result follows.

O

We can now provide a convenient Tomita algebra for ¢s. Let 7, € N be
the Tomita algebra for ¢, and denote

Tpor ={x € Ty n Ny N N | 0F () € N n N for all z € C}.

(This space is called the Tomita algebra for ¢ and T in Proposition 2.2.1
of [30].) Denote the linear span of {Ar(z)Ar(y)* | x,y € T, 1} by A2, and
further denote by (£?(Na), Ay,,Tn,) the GNS construction for s.

Proposition 5.7.3. We have 2y € Z(A,,), and Az is a Tomita algebra for
(N2, ¢2).
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Proof. For x € I, 1, we know that Ap(x)Ar(x)* € .///;2, with
To(Ar(x)Ar(x)*) = xa™.

Since x € 7, also zx* € ///J. Hence 21y < .#,, by polarization, and so
certainly s € Z(A,,).

*

It is clear that 25 is closed under the *-involution. Now choose z,y,u,v €

T, Then
(Ar(w)Ar(0)*)(Ar(z)Ar(y)*) = Ar(uT (v*z))Ar(y)*.
We want to show that vT'(v*x) € F, 7. It is clear that
ul(vz) € NS O Ny o N

By the previous lemma, we have, using notation as there, that Ap(v) and
Ar(z) are analytic for oy ¢, with

af?(Ar(v)) = Ar(of (v))

and

o2?(Ar(x)) = Ar(of(x))

for all z € C. But then also Ar(v)*Ar(z) = T(v*z) analytic for o} ¢, with

0% (T(v*x)) = T(0Z(v)*0¥(2))

z

for all z € C. Since o} @ restricts to o on Ny, and also of restricts to ot on
Ny, we get that uT'(v*z) is analytic for of, with

€

of (uT (v*x)) = of (u)T (0% (v)* 0% (2))
for z € C. Since ., r is invariant under all 0¥ with z € C, we get that
of(uT (v*w)) € N N N

for all z € C. Hence uT' (v*z) € I, r, and thus

(AT(U)AT(’U)*) (AT(QZ‘)AT(y)*) S 912.



5.7 The basic construction 177

We have shown that Ay, (2l2) is a sub-left Hilbert algebra of Ay, (A5, N AL ).
But by the previous lemma, 2ls consists of analytic elements for Uf ? which
restricts to Jf > on Np. So in fact 2y is a sub*-algebra of .7,,, invariant
under the (complex) modular one-parametergroup.

So to end, we have to show that 2, is o-weakly dense in No. For this,
it is enough to show that A7p(7, r) is strongly dense in Q12. Note that
A7 (T, ) is closed under right multiplication with elements from .7, < Ny,
which are o-weakly dense in Ny. Then by a similar argument as in the proof
of Theorem 10.6.(ii), it is sufficient to prove that if z € Q12 and z*Ap(z) =0
for all x € J, 7, then z = 0. So suppose z satisfies this condition. Choose
y € A}, analytic for of'. Then

O3 (0 (1) "A@)= 2O (0%, (1) A ()
= Ay (ay)
= 2 Ar(2)Auly)
= 0.

Letting 6Oy, (Jf/Q(y)) tend to 1, we see that z* vanishes on A, (7, 7). Now

choose © € M, n Mp. Then x, = \/ggfsg e_”t2crf(x)dt is in T, by
Lemma 10.12 of [31], and Ay (z,) converges to Ay(x). Hence z* vanishes on
Ay (M, AMT). Since N, N N7 is weakly dense in N and Ay (A, N A7) is
normdense in Z?(N), we get that z* = 0, and the density claim follows.

O]

Remark: It also follows easily from Lemma 10.12 of [31] that 7, r itself is
o-weakly dense in V.

Let #?(N) ® £?(N) denote the Connes-Sauvageot tensor product, with
m

its natural Ns-Ns-equivalence correspondence structure. Denote by JZ the
natural image of the algebraic tensor product Ay (7, 1) ® Ay( T, ) inside
LAN)® ZL%(N).

“w

Lemma 5.7.4. For x,y,z,w € 9,1, we have

(A () © Ap(y), Ap(2) © Ap(w)) = p(w*T'("x)y).
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Proof. First note that the expression on the left is well-defined by Theorem
10.6.(v) of [31], and then by definition, we have for x,y, z,w € F, 1 that

Bol@) @ 8ol0). Ap(2) @ A ()

(A7 (2)*Ar(x))Ap(y), Ap(w))
p(w*T(z*7)y).

O]

Theorem 5.7.5. Let No € N be a normal inclusion of von Neumann alge-

bras, and Ny its basic construction. Let u be an nsf weight on Ny, and let T

be an nsf No-valued weight on N. Let u, @, s be the tower construction for

pw.r.t. T. Then the space . introduced above is dense in L*(N)®RZL?*(N),
“w

and the map

H — L2(N2) : Ay(x) D As(y) = Ay (Ar(@)Ar(y™)")

extends to a unitary equivalence of No-No-equivalence correspondences.

Proof. By the previous lemma, we have for z,y, z,w € 7, 7 that

Ao (@) © Mg (), Ao (2) © A (w))

= e T(z"1)y)
= N (Ar(2)Ar(y)7), Mg, (A7 (2) A (w™)*)),

so that the given map extends to a well-defined partial isometry. Since

Ay(Z,r) is dense in £?(N) (which was proven in the course of the previ-

ous proposition), we have that .# is dense in .Z?(N) ® £?(N). Since also
m

Ay, (U2) is dense in £%(Ny), the extension is in fact a unitary.

The fact that it is a bimodule map follows from a straightforward compu-
tation (since we only have to check the bimodule property for operators in
2y and vectors in £ and Ay, (Uz)).

O

In the following, we will always identify £L*(N) ® L*(N) and £?*(Ns) in
m

this manner of the above theorem, transporting structure from one Hilbert
space to the other without any further comment.
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Corollary 5.7.6. If x,y € T, 1, then

Vi, (Ay(@) ® Ap(y) = Ap(of (2)) @ Ay (07 (y)-

Proof. This follows straightforwardly from the concrete form of the identifi-
cation of Z?(N)®.ZL?(N) and £?(Ns) given in the previous theorem, using
m

that
of*(Ar(x)Ar(y)*) = Ar(of (x))Ar(of ()™
O

Lemma 5.7.7. Let x,y be elements of T, 1, and let p be an element of
Ny Then

(Ap(z) %)Acp(y)w/\goz (p)) = (Ap(@), PAL (07, (y")))-
Conversely, if p € Ny and £ € £L*(N3) are such that
(Ap(x) %)Acp(y)75> = (AN(2), pPAp(0?;(y™)))

for all x,y € T, 1, then pe N,, and Ay, (p) = &.

Proof. Suppose p = Ap(z)Ar(w*)* for some z,w € J,r. Then since
w*T(2*z) € NG A, we have

Ao(@) @ Ao (1) Ao (P)) = (Bp(@) <§ Ap(y), Ao (2) ® Ay (w))

)
<A<p( (=" )) Ap(@?,(y™)))
Ap(x), Ap(0?,(y™)))

= (Ap(),pA 4,0( iy

As 25, being a Tomita algebra for ¢, is a o-strong-norm core for A,,, the
result holds true for any p € 4,.

Now we prove the converse statement. So let p € Ny and & € £?(N2) be
such that

Ao (@) © Ap(v), £ = Mg (@), pPAp(0%(y™))
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for all z,y € J, 7. Then, since 25 is also a o-strong-norm core for A, it is
enough to prove that pAg, (a) = Oy, (a)¢ for all a € Az, by Proposition 5.3.6.
Now if a = Ap(z)A7r(y*)*, then a € 7, with
Ag?;l; (a) = ']NzAlm (a*)
= A<P2 (Ufi/g (a))
— Ap(Ar(0?, @) A%, (1))):

So if also b € ™Ay with b = Ap(2)Ar(w*)*, w,z € J, 7, then

Ay (0), pAZ (@) = (A (b), Ay (PAT (07, o (2)) AT (0Z, 1 (1))")
= <A<P(Z)7pAT(UfZ/Q(a:))AT(UfZ/g(y)*)*AW(O-fz(w*)»

by the first part of the lemma. On the other hand, we have

B (0), 03, (@) = Ony(@)* Ay (0),©
= <A<p2(b‘71/2( a)*), &)
= (A (A (2)Ar(w™*)* Ar (o7, (y)*) Ar(o75(2))"), &)
= (Apy (A1 (2)Ar (07, (2)T (05 (y)w™))*), &
= (Ap(2),PA (07, (@) T (0%, 15 (y)o? s (w™)))),

the last step by our assumption. Since this equals our earlier expression, we

have proven that pAg) (a) = O, (a)¢ for all a € As.
O

We prove three further results which naturally belong here.

Lemma 5.7.8. Let Ny € N be a unital normal inclusion of von Neumann
algebras, T an nsf operator valued weight from N onto Ny, p an nsf weight on
No, and ¢ the nsf weight poT. Suppose x € N and z € B(L?*(Ny), L?*(N))
are such, that for any y € A, we have xy € N, and Ay(xy) = 2A,(y).
Then x € N with Ap(x) = 2

Proof. Choose y,w € 4}, with w in the Tomita algebra of ;1. Then
On(w)zAu(y) = On(w)Ayp(zy)
= AQO(:EyUfZ‘/Q(w))

= ZAM(?/O{Z‘/Q (w))
= 20Ny (w)Apu(y),
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so that z is a right Ng-module map. It follows that z*z € Njy.

Now for any element u € Ny ", one can find a sequence u,, € Nj such that
un, /" u pointwise on (Ny)§ (see the proof of Proposition 4.17.(ii) in [84]).
From this, it follows that for every y € .4},

WAL )AL (T (@ 2)) = p(y*T(x*)y),

using Corollary 4.9 of [84] (which allows us to extend weights to the extended
positive cone). Using the bimodularity of 7', the right hand side equals
o((xy)*(zy) = (o T)(y*z*zy), which is bounded by assumption. Since
this last expression equals (zA,(y), zA,(y)), again by assumption, we see
that

WA ()0 () (T (E72)) = WA, (1),0, () (272)

for all y € 4},. By the lower-semi-continuity of T', we conclude that T'(z*x)
is bounded, and then of course Ar(x) = z follows.

O
Nip & Nn

Lemma 5.7.9. Let Ul Ul be unital normal inclusions of von Neu-
Noo & No

mann algebras. Denote, for i € {0,1}, by Q; the linking algebra between the
right Nijo-modules £?(Nyo) and £?(N;1). Suppose Ty is an nsf operator
valued weight Nfr1 - fo)’ext whose restriction to NJI determines an nsf op-
erator valued weight Nj; — Ngy®, in the sense that w(Tp(z)) = w(Ti(x))
for all w e (N1o)f and x € Nj. Then there is a natural normal embedding
of Qo into Q1, determined by At (x) — Aq,(x) for x € N7,

Remark: The inclusion will in general not be unital. Consider for example
the case where Nj; = M3(C) and all other algebras equal to C.

Proof. By assumption, if z,y € A7, then z,y € A7, and Tp(z*y) =
Ti(z*y). Denote by 2; the *-algebra generated by the Ag, (z), z € A7,
and by Q; its o-weak closure inside Q. Denote by 2 the *-algebra gen-
erated by the Ag(z), € A7,. We want to show that Qo and Q; are
isomorphic in the indicated way.

Now for a;,b; € A7, it is easy to check that >, Ap (a;)Ar (b;)* = 0 iff
> Ay (ai) A1, (b;)* = 0, so we already have an isomorphism F' at the level
of 2y and Ql. Denote by eg the unit of Ny, seen as a projection in @,
and denote by e; the unit of Nyy as a projection in Q. Suppose that z; is
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a bounded net in 2y which converges to 0 in the o-weak topology. Then
for any a,b € 2y, we have that eyax;beg converges to 0 o-weakly. Applying
F, we get that ey F'(a)F(z;)F(b)e; converges o-weakly to 0, and then also
ce1F(a)F(x;)F(b)eid, for any ¢,d € Q:. Since Qlelgl is o-weakly dense in
Q1, we get that F(z;) converges o-weakly to 0. Since the same argument
applies to F~1, we see that F extends to a *-isomorphism between Qy and
Ql, and we are done. ]

Remark: We could also have used the results from [66] concerning self-dual
Hilbert W*-modules.

When 7 is a Hilbert space, and A a (possibly unbounded) positive operator
on 7, we denote by Tr(-A) the nsf weight on B(#) such that, with &;
denoting an orthonormal basis of .7 consisting of vectors in Z(AY?), we
have

Tr(- A)(z) = > |2 PAY2E)? for e B(o)*

(2

Its modular one-parametergroup is implemented on J# by A™.

Lemma 5.7.10. Let 7 be a Hilbert space, and ¢ an nsf weight on B(J).
Let Tr be the canonical trace on B(J), and A the positive, densily de-
fined operator such that ¢ = Tr(-A). Then, under the canonical iden-
tification B(A) @ B(H#) — B(ZL?*(B(J)), the operator valued weight
T, : B(Z*(B())) — B(J), obtained from the inclusion C % B(s),

).
Proof. Note that s#®.# can be identified with .22 (B(#)) by sending £®@7

to Amy(lely), by which we identify B(#') @ B() with B(Z*(B(s¢))). We
explicitly denote this map by ®.

corresponds to the operator valued weight t ® Tr( AT

Now 9 := ¢ o T}, will equal Tr(-V,), since % = V., where p is just the
identity map on C. Moreover, it is well-known (and easy to establish) that

oIV =At@A".

Hence
0o®=Tr(-A)@Tr(-A "

) )-
Clearly, T, := ® o (1 ® Tr( -Z_l) o ® ! is an nsf operator valued weight
satisfying ¢ o T,, = Tr(-V,). By uniqueness (Theorem IX.4.18 of [84]),
T, =T,.

O



Chapter 6

Preliminaries on locally
compact quantum groups

In this chapter, we recall the main results from [56], [57] and [85] on von
Neumann algebraic and C*-algebraic quantum groups and their coactions.
We also develop some new results concerning integrable coactions in the
fourth section.

6.1 von Neumann algebraic quantum groups

Definition 6.1.1. A Hopf-von Neumann algebra! is a couple (M, Ayy) con-
sisting of a von Neumann algebra M and a unital normal faithful *-homo-
morphism Ay 2 M — M ® M, called the coproduct or comultiplication,
such that

(Apr ®ear)Anr = (bar @ Ap)Ang (coassociativity).

A Hopf-von Neumann algebra is called coinvolutive if there exists an invo-
lutive anti-*-automorphism Ry : M — M such that

Apro Ry = (Ry ® Ryy) o A?f[).

Such an Rys is then called a coinvolution.

L The terminology von Neumann bialgebra would be better suited, but we will keep the
terminology as it is used in the literature

183
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As for Hopf algebras, we will simply denote a Hopf-von Neumann algebra
by the symbol for its underlying von Neumann algebra.

The following object was studied in [57] (see also [95]).

Definition 6.1.2. A von Neumann algebraic quantum group is a Hopf-von
Neumann algebra M for which there exist nsf weights pp; and ¥y on the
von Neumann algebra M, such that for all non-zero w € (My)*, we have,

forxe #}

©m?’
om((w® tar)An(x)) = w(l)ep(x) (left invariance),

+
and, for x € e///wM,

V(e @ w)Apr(x)) = w(1)Yar(x) (right invariance).

In [57], it is then proven that these invariance properties imply the following
stronger statement.

Lemma 6.1.3. Let M be a von Neumann algebraic quantum group and N
a von Neumann algebra. Then for w € (N ® M)} and x € (N ® M), we
have

w((ev @ e @ ar) (kv ® Anr)())) = wi((ew @ ar)())
where w1 (z) := w(x @ 1pr) for x € N. Similarly for ;.

The previous lemma implies in particular that for any non-zero positive
functional w on a von Neumann algebraic quantum group, the nsf weight
(w® par)Ap on M equals the nsf weight w(1a)ear. It also implies that
Me@prr) N Ap (M) = Ny

von Neumann algebraic quantum groups have a lot of extra structure, which
would maybe not be expected given this airy definition. We recall some of
the most important results. They are however not ordered in the way one
should prove them!

Proposition 6.1.4. Let M be a von Neumann algebraic quantum group.
If op and @ap are left invariant nsf weights, then there exists r € R} with
POy =1 ppr. Similarly, all right invariant nsf weights are scalar multiples
of each other.
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In the following, we will always suppose that we have associated some fixed
left invariant nsf weight with a von Neumann algebraic quantum group M.
By the following results, once this left invariant weight is fixed, one can
canonically associate to it a right invariant weight.

Definition-Proposition 6.1.5. Let M be a von Neumann algebraic quan-
tum group. There exists a unique couple (7, Ryr), consisting of a one-
parametergroup of *-automorphisms M of M and an involutive anti-*-auto-
morphism Ry; of M, such that Ry o TtM = TtM o Ryr, and such that, with
Sy = RMOT%/Q, we have, for x,y € Ny, , that (L @par)(Am(y)* (1®x)) €
.@(SM), with

Su((err ® ear) (Anr(p)* (1@ )" = (ear @ par) (Anr(2)* (1 @ y))-

This property is called strong left invariance.

The one-parametergroup TtM is called the scaling group of M. The anti-
automorphism Ryr is called the unitary antipode of M. The map Sy is
called the antipode of M.

We have that TM commutes with o™ and o¥M for all s,t € R, while
Ry oofM = 012” o Ry

Note that if z,y € A}, then Ap(y) and (1 @ z) are both in g, ), 50
that (ear ® o) (A (y)*(1 ® x)) makes sense.

Proposition 6.1.6. Let M be a von Neumann algebraic quantum group.
Then each automorphism M of the scaling group is an automorphism of
the von Neumann algebraic quantum group M :

ApyomM = (M @1M)o Ay
On the other hand, the unitary antipode Rys is a coinvolution.

In particular, if oar is a left invariant nsf weight, then ¥y = opr 0 Ryy is
a right invariant nsf weight.

As said, we will then always suppose that a left invariant nsf weight 5, has
been fixed, and will take 1p; := par o Ry as the right invariant nsf weight.
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Definition-Proposition 6.1.7. Let M be a von Neumann algebraic quan-
tum group. Then there exists a number vy € IRSr , called the scaling constant,

such that oy o M = v om forteR.

M.

This allows us to construct a canonical unitary implementation for 77: we

denote by Pi’ the unique unitary on Z2(M) for which
; —t/2
Piihgn (@) = vif Ao (i1 (@), we Ay

There is a further strong connection between @j; and ¥ys: the unitary 1-
cocycle relating them is almost a one-parametergroup.

Definition-Proposition 6.1.8. Let M be a von Neumann algebraic quan-
tum group. Then there exists a (possibly unbounded) positive operator 0py

affiliated with M (i.e. 8, € M for allt), called the modular element, such
42 .
that the cocycle derivative of ¥ w.r.t. oy equals uy = Vj\i[ /2(5}6[. This im-

plies that of™ (8%) = V{164 for all s,t € R.
Moreover, the 5}@ are group-like elements:
Anr(03y) = 0 ® 83y,
which implies that TM(8%) = 6% and Rp(6%;) = 634" for all s,t € R.

Proposition 6.1.9. Let M be a von Neumann algebraic quantum group.
Then the GNS map for Yy equals the o-strong-norm closure of the map

N = LMY 12— vy PN (28)),

where %‘i&f is the subset of M consisting of left multipliers x for 6%2, for

which x5]1\//[2 € Nons-

By this last corollary, one may intuitively write ¥ = s (5}//12 . 6]1\//[2).

To keep the scaling constant vy; from popping up at unwanted places, we
can, as in the original paper [57], scale the semi-cyclic representation for
P we write
T =8 A
M =V - Dapyy

However, we will still use Ay, as the fixed GNS construction to transport
structure from .Z2(M, 1pr) to £?(M): the only thing which would change if
we would use I'y instead, is that the modular conjugation would get scaled
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by a factor v/® (so, with obvious notation, Jr,, = I/;\/fJAwM).

We will also write
AM = A

since, as stated, we will always assume that there is a fized left invariant

nsf weight associated with a von Neumann algebraic quantum group. We

further write the modular one-parametergroup of™ as a{‘/[ , and we write

PM>

a;f M as oM. We follow the same convention for the modular operators.

The following definition introduces the notion of a multiplicative unitary.
This concept, whose origins go back to Stinespring, was studied in full gen-
erality in the influential paper [4].

Definition 6.1.10. Let 57 be a Hilbert space. A unitary W € B(J ® F)
1s called a multiplicative unitary if W satisfies the pentagonal identity:

WiaWisWaz = WazWia.

Definition-Proposition 6.1.11. Let M be a von Neumann algebraic quan-
tum group. Then for each x € A, and w € M,, also (w ® tyr)Ap(x) €
N, and there exists a unique unitary Wyr € M ® B(Z?*(M)) such that

YM >
(W@ ) Wi Aum(z) = Ap((w ® ear) Apr ()
for all such x and w.

Then Wiy is a multiplicative unitary on L?(M) ® £?*(M), called the left
regular corepresentation. Moreover, the set

{(tr ®w) (W) | w e B(L*(M))}
18 o-weakly dense in M.

In the previous definition-proposition, the existence of Wy, as an isometry
is in fact not so difficult to prove. The hard part consists in showing that it
is surjective.

We have a similar result on the right.

Definition-Proposition 6.1.12. Let M be a von Neumann algebraic quan-
tum group. Then for each x € Ny, and w € M,, we have (tpr Qw)Ap(x) €
Nepars and there exists a unique unitary Vi € B(L?(M)) ® M for which

(L®w)(VM)A¢M (z) = AwM(([’M Qw)An(z)).
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Then Vi is a multiplicative unitary on £*(M) @ £*(M), called the right
regular corepresentation. Moreover, the set

{(w® ) (Vi) | w e B(Z(M))}
18 o-weakly dense in M.

As the name suggests, the regular corepresentations are specific examples of
(unitary) corepresentations.

Definition 6.1.13. Let M be a von Neumann algebraic quantum group. A
unitary left corepresentation U of M consists of a Hilbert space J together
with a unitary U € M ® B(A) such that

(A @ tpwr))(U) = Ur3Uss.

A unitary right corepresentation U of M consists of a Hilbert space F&
together with a unitary U € B(7€) ® M such that

(tBry ® Ap)(U) = Ur2Uss.

The left regular corepresentation of a von Neumann algebraic quantum
group can be used to give a nice formula for its antipode.

Proposition 6.1.14. Let M be a von Neumann algebraic quantum group,
with left reqular corepresentation Wys and antipode Spr. Then for each
w € B(L%(M))y, we have (1pyy @w)(War) € 2(Swr), and

Su((ear @) (W) = (ear @ w)(Wiy).-

The multiplicative unitaries are the key to the duality theory for von Neu-
mann algebraic quantum groups.

Definition-Proposition 6.1.15. Let M be a von Neumann algebra, Wy
the left reqular corepresentation. Then the o-weak closure of

{(w® )W) | we M.}
1s a von Neumann algebra M.
For xz e M\, we have Wyr(z @ L)W, € J/W\@M\, and
Ag: Mo MQM:z— SWy(z@)WES

makes (]\7, Aﬁ) into a von Neumann algebraic quantum group, called the
dual von Neumann algebraic quantum group of M.
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The following Proposition shows how the left invariant weight on this dual
is defined, and at the same time provides us with a Fourier transform.

Proposition 6.1.16. Let M be a von Neumann algebraic quantum group.
Define Sy as the set of w € M, for which the map

Api( M) = C: Ay, (2) = w(z*) = w(x)

extends to a bounded functional on £?(M), which will then be of the form
we, = {-,&) for a uniquely determined &,. Further denote by A the

(faithful) map
Av My > M:w— (W) (W)

Then there exists a unique nsf weight o7 on M such that the o-strong-norm
closure of the map

M (F) = LEHM) : dy(w) — &,

determines a semicyclic representation for pzz. Moreover, @17 will then be

a left invariant nsf weight for M.

Thus this determines canonically a unitary intertwiner .2 2(]\7 ) = ZL%(M)
of left M -representations, and we will then transport all structure of .2 2(]\/Z )
to Z2(M) without further comment. We will then use several notations for
the associated semi-cyclic representation, namely A@ﬁ, Ay and A M-

The following proposition states that ‘taking the dual’ is an involutive op-
eration.

Proposition 6.1.17. Let M be a von Neumann algebraic quantum group.
Then Wi = YWy 5, and hence the dual of M coincides with M as a von
Neumann algebraic quantum group. Moreover, if pg; is the left invariant

weight on M constructed from wpr as in the previous proposition, then the
construction of the previous proposition, applied to ¢z, gives us back @y .

We will then always use this constructed weight @17 as the fixed left in-

variant weight on M. By the previous proposition, it also follows that for
example Ay = Apy.
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Apart from the dual, there are some other new von Neumann algebraic
quantum groups which can easily be built from a given von Neumann al-
gebraic quantum group. We list them here, together with their left regular
corepresentations.

Proposition 6.1.18. Let M be a von Neumann algebraic quantum group.

The commutant von Neumann algebraic quantum group M' is a von Neu-
mann algebraic quantum group with underlying von Neumann algebra M’,
and coproduct

We choose oy o C’A_/[l as its fized left invariant nsf weight. Its left regular
corepresentation 1s

Wiy = (I @ Ine) W (I ® Inr),
which can also be written

Wap = (Ad(Jn ) @ 1) (W),

The co-opposite von Neumann algebraic quantum group M P has M as its
underlying von Neumann algebra, but coproduct

Appeon(z) = A%(z).

We choose 1y as its fixed left invariant nsf weight. Its left regular corepre-
sentation is
WMcop = ZV]\?E

There are various relations between the operations of taking ‘duals’, ‘com-
mutants’ and ‘co-opposites’. We will only need one of them.

Proposition 6.1.19. Let M be a von Neumann algebraic_quantum group.
Then the von Neumann algebraic quantum groups M’ and M<P are isomor-
phic by the identity map.? Moreover, this isomorphism respects the canonical
semi-cyclic representations into L*(M). The common left reqular corepre-
sentation of these von Neumann algebraic quantum groups is Vas.

2To avoid a possible ambiguity: we will always mean (M\ )" by this notation.
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It is useful to scale the natural semi-cyclic representation of M by /8, for
which we introduce the following notation:

~

L= 078 Agi-

Lemma 6.1.20. Let M be a von Neumann algebraic quantum group. De-
note by M2 the space of elements w in M, for which x — w(azégj/z) extends
from the space of left multipliers of 51\_/[1/2 to a normal functional s on M.
Then Appeor(M2) N N

, 18 a o-strong-norm core for I'yr, and moreover

Ap(@), Ty (m)y =ws(z)  forze A,
if m = Appeor(w).
Proof. Let x € 4y,,. Then since

Angeon (My) A

¥ jrcop

= Angeor (M) (Ingeer ),

by Remark 8.31 of [56], we have for w € M and x € .4,,, and writing
m = )\MCOp (Ld), that

(Apgeor (), A]\//[c\op (m)) = w(z*),

by definition. So if z € M is a left multiplier of 5]1\//[2, and ;1:(5]1\//[2 € Ny this
becomes

(A (26y)), Dar(m)y = @().

Then also, if x € A, is a left multiplier of 5];‘,1/2, we have (Ay(z), Tas(m)) =
Ws(x). Since such z form a o-strong-norm core for Ay, and since the s is
of the form wg, for certain &,n € £?(M), we find that this identity holds
for all z € .4,,,. This proves the second part of the lemma.

As for the first part, take w € #yscop. Define a normal functional w,, € M,

by the formula
+00 '
wp(x) = \/ﬁf efnth((sﬂtx)dt
T J-o
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for x € M. Then w, € M,‘f and w, — w in norm, so that also Apscop (wy,)
converges to Apseor (wy). Moreover, if z € A7, , we have

+00 .
\/ﬁ f e " m (26t Ndt
T J o

n [+ —nt? it
; € <A¢M (x(SM)a A]\’/[?@ ()‘Mcop (w))>dt
—©

Wn ()

+o0 ,
Vo[ e () Il I s s )l
—0

n +00 Y B ;
<AwM(.%'), \/;f (& t2V t/2JM(5]\ZJMAW(AMcop(w))dt>,
—00

so that w, € Fpscop with

P 4
Aﬂgo\p (Apgeor (W) = \/;foo efntzvft/zJM(SﬁZJMAW (Apgeor (w)).

Now a standard calculation shows that the right hand side converges in
norm to A7z (Aneor (w)) when n goes to infinity. Since we know already
that Apgeor (M) N Ap -, is a o-strong-norm core for A7z, we can conclude
from the foregoing calculations that Apzeop (M) N JI{OM is a o-strong-norm

7

!’
core for T'yy.
O

We end by quickly recalling the two main classical examples of von Neumann
algebraic quantum groups. Let & be a locally compact group, with left Haar
measure 9. Then M = (8, ) is a von Neumann algebra, and it becomes
a von Neumann algebraic quantum group by defining Aps(f), where f is
(the equivalence class of) an essentially bounded function f on &, to be
(the equivalence class of ) the function in

LP(BxBox0)=2MOM

which assigns f(gh) to (g,h) € & x &. Then the invariant weights become
integration with respect to the left and right Haar measure, the antipode is
dual to the inversion in the group (and in particular, the scaling group is
trivial), and the modular element becomes the modular function. One can
show that any von Neumann algebraic quantum group with commutative
underlying von Neumann algebra is of this form.
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The second main example is the dual of the previous construction. We
consider again a locally compact group &, and consider its left regular re-
presentation 7 on .£%(®, ), that is, (7(g) f)(h) = f(g~'h) for f € L*(®, o).
Then denote

M:=2(®) = {n(g) | g€ &}".

The application A (7(g)) = 7(g9)®@m(g) can then be extended (uniquely) to

a comultiplication on M , making it into a von Neumann algebraic quantum
group. The left invariant weight will equal the right invariant weight in this
case, and this common weight is then called the Plancherel weight. It will
be tracial iff the modular function of the group is trivial.

6.2 Cr-algebraic quantum groups

Associated to any von Neumann algebraic quantum group, there are two
canonical C*-algebraic quantum groups: a reduced one and a universal one,
which are resp. smallest and largest among all possible C*-algebraic real-
izations of the von Neumann algebraic quantum group.? Since we will not
very often work with C*-algebraic quantum groups directly, we will not re-
call their definition in detail, only commenting on the structures we will use.

For the following result, we refer to [57].

Definition-Proposition 6.2.1. Let M be a von Neumann algebraic quan-
tum group. The associated reduced C*-algebraic quantum group consists
of the norm-closure A of the set {(tpr @ w)(Wyr) | w € M\*}, which can be
shown to be a C*-algebra, together with the restriction of the map Ay to A,
which can be shown to have range in M(A ® A).

mn

For example, if & is a locally compact group, then the reduced /C\*—algebra
of M = £%(®) is A = Cy(®), while the reduced C*-algebra of M = Z(®)
equals CJ(®), the reduced C*-algebra of &.

The following discussion is taken from [54].

3The term ‘locally compact quantum group’ should then refer to the ‘common object’
underlying all C*-algebraic implementations of some von Neumann algebraic quantum

group.
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Definition-Proposition 6.2.2. Let M be a von Neumann algebraic quan-
tum group. The space LL(M), consisting of those w € M, for which the
functional x — w(Sy(z)*) on the *-algebra of analytic elements for TM has
a (necessarily unique) extension to a normal functional w* on M, is called
the restricted predual of M.

It has a Banach *-algebra structure, by putting
w1 - wy = (w1 Quwa) o Apy,

giving it the *-operation introduced above, and giving it the norm
|l 2z ary = maz{]w], ™[}

Definition 6.2.3. Let M be a von Neumann algebraic quantum group. The
universal C*-algebra A" associated to M is the universal C*-algebraic en-
velope of the Banach *-algebra L1 (M).

Similarly, there is a universal C*- -algebra associated with the dual von Neu-
mann algebraic quantum group M and we denote it by the symbol Av.,
One can show that A" also has the structure of a C*-algebraic quantum
group, but we will not be concerned with it in this thesis. The main use
of the universal C*-algebra is that its non-degenerate *-representations are
in one-to-one correspondence with the unitary corepresentations of the dual
von Neumann algebraic quantum group.

Proposition 6.2.4. Let M be a von Neumann algebraic quantum group.
Then any unitary left corepresentation U is continuous:

Ue M(A ® By(#)).

It then gives rise to a non-degenerate *-representation of Av by extending
L (M) — B(A) :w = (w i) (U),

which can be shown to be multiplicative and *-preserving, to Av,

Moreover, there exists a universal unitary left corepresentation

W"e M(A ® AY) € M ® B(")

mwn

on a Hilbert space JC, such that any non-degenerate *-representation w of
A" is of the above form, with associated unitary corepresentation

U= (a®@m)(W").
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Unitary right corepresentations then correspond one-to-one to non-degenerate
right *-representations of A%.

When & is a locally compact group, it is easy to show that for M=y (8),
the associated universal C*-algebra equals the universal C*-algebra of &, and
then the above result says that there is a natural one-to-one correspondence
between unitary corepresentations of .£*(®) and unitary representations of
8.

6.3 Coactions of von Neumann algebraic quantum
groups

We recall in this section some definitions and results from [85]. We warn

however that that paper works in the setting of left coactions, while we will

mostly work with right coactions, so we will left-right translate the notions

of [85]. One can do this easily by replacing a von Neumann algebraic quan-
tum group M by its coopposite MP.

Definition 6.3.1. Let N be a von Neumann algebra, M a von Neumann al-
gebraic quantum group, and o : N — N®M a normal unital * -homomorphism.
We call o a right coaction of M on N if a is injective and

(a ® LM)a = (LN ® AM)Oé

We call o faithful when the algebra generated by the set {(w ®tpr)a(x) | x €
N,w € N,} is o-weakly dense in M.

We call o integrable when 4, gp,, N a(N) is o-weakly dense in o(N).

We call the von Neumann algebra
N*:={zxeN|a(z)=x® 1}

the algebra of coinvariants of «, and we say that o is ergodic when N% =
C-1yn.

In case M = £*(®8) for a locally compact group &, a coaction of M on
a von Neumann algebra NN is the same as a continuous homomorphism
® — Aut(NV), where Aut(N) denotes the group of *-automorphisms of N,
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endowed with the point-o-weak topology. The faithfulness of the coaction
then corresponds to oy # ¢ for g not the unit element of the group, while
the ergodicity corresponds to having x € N scalar when oy(z) = « for all
ge ®.

We introduce some further terminology concerning coactions.

Definition 6.3.2. Let N be a von Neumann algebra, M and P two von
Neumann algebraic quantum groups, and oo : N — N @ M a right coaction
of M on N, v: N - PQN a left coaction of P on N. Then we say that
« and vy commute if

(Y® ) = (tp ® a)y.

Definition 6.3.3. Let N be a von Neumann algebra, and o a right coaction
of a von Neumann algebraic quantum group M on N. Then an nsf weight
Y on N is called invariant w.r.t. « if for any w € M," and x € .4, we have

(e @w)a(z)) = w(l)¥(x).

More generally, if m is a positive operator affiliated with M, we say that an
nsf weight 1 is m-invariant w.r.t. o when for all € € 2(m'/?) and x € M,
we have

(L @uee)a(z)) = v(x)|m* g%

Definition 6.3.4. Let M be a von Neumann algebraic quantum group, N
a von Neumann algebra, and o a right coaction of M on N. A 1-cocycle
for the coaction « (also called a-cocycle) is a unitary element v e N @ M
which satisfies

(LN ®AM)(U) = Ulg(a ® LM)(U).

If a1 and ag are two right coactions of M on N, then a1 and a9 are called
cocycle equivalent or outer equivalent if there exists an aq-cocycle v such
that ag(z) = vay(z)v* for x e N.

These notions then agree with those introduced in Definition 5.2.7 in case
M = Z*(R).

We now give some information concerning the further structure associated
to a general coaction.

First of all, we can characterize the image of any coaction « as follows
(Theorem 2.7 of [85], which refers to [32]).
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Proposition 6.3.5. Let M be a von Neumann algebraic quantum group,
and o a right coaction of M on N. Then

a(N)={ze NOM | (a®@um)(2) = (tn @ An)(2)}-

Next, we have that from any coaction, we can construct a new von Neumann
algebra.

Definition 6.3.6. Let a be a right coaction of a von Neumann algebraic

quantum group M on a von Neumann algebra N. Then the crossed product

von Neumann algebra N x M (denoted N x M when « is clear) is the o-weak
o

closure of the linear span of
{(1®@m)a(z) |z € N,me M'} € B(L*(N)® L*(M)).

It is not so difficult to show that this is indeed a von Neumann algebra (i.e.,
closed under multiplication and the *-operation).

Definition-Proposition 6.3.7. Let « be a right coaction of a von Neu-
mann algebraic quantum group M on a von Neumann algebra N. Then the
assignment

(1@m)a(r) » (1® Az (m))(a(z) ®1)

extends to a well-defined integrable coaction
&:NxM-— (NxM)@M,

called the dual coaction of a. The algebra of coinvariants (N x M)® equals
a(N).

The next definition describes the dual weight construction, which allows
one to canonically lift nsf weights on N to nsf weights on N x M. We
first recall a result from [85] (Prop. 1.3): if a is a right coaction of a von
Neumann algebraic quantum group M on a von Neumann algebra N, then
the assignment

reNT > NT™ 2 o (L@ ou)a(z)

can be interpreted as a faithful normal N%-valued weight T, on N. In
particular, a coaction « is integrable iff this operator valued weight T, is
semi-finite.
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Definition-Proposition 6.3.8. Let a be a right coaction of a von Neumann
algebraic quantum group M on a von Neumann algebra N. Let o be an nsf
weight on N. Let Ty : (N x M)T — (a(N))"% be the nsf operator valued
weight (LNxM®g0]\7,)&. Then the weight N = enoa toTy on N x M
is called the dual weight of oy (w.r.t. ). There is a natural semi-cyclic
representation for onxu on L2(N)® L2(M), by closing the map

)

D@ mi)a(x;) — ZAW (z1) ® A, (my),

defined on the linear span of the set {(1@m)a(z) | m e A,
the (o-strong® )-(norm)-topology.

G TE My}, in

It is shown in [85] that the resulting identification of .Z?(N x M) and
L?(N)®.ZL%(M) is in fact independent of the choice of nsf weight on N. In
the following, we will then always transport the structure from Z2(N x M)
to ZL%(N) ® £?(M) via this correspondence.

We have the following relation between the modular one-parametergroups
of a weight ¢y and its dual (cf. Proposition 5.6.3).

Proposition 6.3.9. Let « be a right coaction of a von Neumann algebraic
quantum group M on a von Neumann algebra N. Let oy be an nsf weight
on N, and onxr the dual nsf weight on N x M. Then

PN _ O_;PNxM

o of °a.

In our next chapters, we will be mainly concerned with integrable coactions.
The following easy lemma concerning integrable coactions is used to recall
an important Cauchy-Schwarz type inequality.

Lemma 6.3.10. Let o be an integrable right coaction of a von Neumann
algebraic quantum group M on a von Neumann algebra N. Then if x € N7,
we have (w @ tar)afx) € N, for all w e Ny.

Proof. This follows from the inequality
(w®u)a(@)* (W@ w)a(r) < || - (Jw] @ ear)(e(z*x)),

where |w| is the absolute value of w. O
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Our next definition-proposition again recalls a result of [85], namely the
construction, for an arbitrary right coaction «, of a certain unitary in
B(Z?(N)) ® M implementing the coaction.

Definition-Proposition 6.3.11. Let «: N - N ® M be a right coaction
of a von Neumann algebraic quantum group M on a von Neumann alge-
bra N. Then U := Jywpm(JIn ® JAA/I) s a unitary right corepresentation,
implementing o in the following way:

U(x®1U* = a(x) for all x € N.
It is called the (canonical) unitary implementation of «.

When « is integrable, one has the following alternative formula for U. Let
w be an nsf weight on N%, and let o be the nsf weight poT, on N. Then

for any &,m e L?(M) with £ € _@(5];[1/2), and any T € N, , we have
(1© ) (U)Ay (2) = A (1 @1, (0],

where the right hand side can be shown to be well-defined.

We remark that by the closedness of Ay, it is easily seen that the alterna-
tive formula for U stays true if we replace w¢, on the left side by a general

w € M, for which the function z — w(azéx/ll/ 2) extends from the linear space

of left multipliers of 5;/[1/ ? to a normal functional ws on M, and w12 ¢ O
M )

the right side by this ws.

In what follows, it will at times be more convenient to work with .Z2(M) ®
Z?(N) in stead of £?(N)® .Z?(M). We then consider also this space as a
natural N x M-equivalence correspondence, using the flip map to transport
all structure from .Z?(N) ® £*(M).

The following theorem of [85] will be of the most importance to us.

Theorem 6.3.12. Let N be a von Neumann algebra, M a von Neumann
algebraic quantum group, and o a right coaction of M on N. Let U be the
unitary implementation of a. Then « is integrable iff the map

{(1®(Qw)(Va))a(z) |z e N,we My} - B(L*(N)) :
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1®(®w)(Vr))a(z) = (t®w)(U) -z

extends to a normal *-homomorphism
pa: N x M — B(ZL?*(N)).

It is not difficult to show that the range of such a map p, is then precisely
Ny, with Ny the basic construction applied to N* € N.

Definition 6.3.13. Let a be an integrable right coaction of a von Neumann
algebraic quantum group M on a von Neumann algebra N. We call the map
pPo i N x M — Ny the Galois homomorphism associated to «.

By the map p,, we can make normal unital left and right N x M-*-representa-
tions on .Z?(IN). We have then also associated left and right M'-*_representa-
tions. We denote them respectively by 7/, (so 7., (m) = pa(1®m) for m € ]\7’)
and 5& (so gg(m) = Jn7,,(m)*Jy when m € M\’) Finally, by 7, and 8, we
denote the associated left and right M-module structures (so o = 5& oC

and ga = 7o 0 Cg3)-

Lemma 6.3.14. If «a is an integrable right coaction of a von Neumann
algebraic quantum group M on a von Neumann algebra N, then 0. (m) =

o Ry (m)).

Proof. Just use that (JN®JM\)U(JN®JM\) = U* and (JM®JM\)VM(JM®
JM\) =V
L]

In case of an integrable coaction, also the modular operators of an nsf weight
pn = poT, and its dual weight s can be related.

Proposition 6.3.15. Let o be an integrable right coaction of a von Neu-
mann algebraic quantum group M on a von Neumann algebra N. Let u be
an nsf weight on N, let o be the nsf weight poT, on N, and onxar the
dual weight of o on N x M. Denote by kM the one-parametergroup of
automorphisms on M, given by

ry (x) = 03 T2 ()0

Then oy is kM -invariant, and if we denote by q}'\t/[ the resulting one-para-
metergroup of unitaries determined by
i hpn (2) = Mgy, (11 (2)) € A
Apr o \ T em Kt \T)), T

YN
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then

Vewun = Vi, ®al;

PNxM

Proof. The proof of this result is contained in the proof of Proposition 4.3
of [85]. O

The one-parametergroup q}l\tj appearing in the previous proof also has a
different expression:
— 5—ztv—zt

We introduce some further notations for an integrable coaction a of a von
Neumann algebraic quantum group M on N. By N we will mean the space
of right M-intertwiners _between Z 2(M) and Z%(N). We then also denote
by O the space of right M-intertwiners between .Z 2(N)and . 2( ) and by
P the space of right M-intertwiners from Z%(N) to itself (so P =0, (M ) ).

g ]]\\; > Note that when pq, is faithful, Z*(N)

is a ]E’—M\ -equivalence correspondence, and @ a linking algebra between M
and P.

We further denote Q (

6.4 More on integrable coactions

In this section, we give some further results concerning integrable coactions.
Apart from proving some commutation relations, which will be of impor-
tance in the following chapter, our main result is Theorem 6.4.8, which
gives an alternative description, on the Hilbert space level, of the Galois
homomorphism of an integrable coaction.

Throughout, M will denote a von Neumann algebraic quantum group, N a
von Neumann algebra, and « an integrable right coaction of M on N, whose
unitary implementation we denote by U. We also suppose that N® comes
equipped with some fixed nsf weight p, and then we denote oy = po Ty.
Recall that .7, 7., denotes the Toimta algebra for ¢y and the operator
valued weight T, = (t ® @)« (cf. page 175).

Lemma 6.4.1. The map
A@N(‘ZﬂN,Ta) %)AS@N(‘?@DN,T(;) - XQ(N) ®$2(M) :
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Aon () @ Ay (y) = (Ao @ Ay ) (@) (y ©1))
is well-defined and isometric.

Proof. Using the formula of Lemma 5.7.4 to evaluate the scalar product of
left hand side elements, this is easy. O

Denote by
G: ZL*(N)®ZL*(N) - Z(N)QL*(M)
1

the closure of the previous map.?

Definition 6.4.2. Let o be an integrable right coaction of a von Neumann
algebraic quantum group M on a von Neumann algebra N. We call the
operator

G=%G: L*(N)®ZL*(N) -» L*(M)® ZL*(N)
o
the Galois map or the Galois isometry for «.

Remark: The reason for putting a flip map in front of G, is to make it right
N-linear in such a way that this is just right /N-linearity on the second fac-
tors of the domain and range, so that ‘the second leg of G is in N’. See the
third commutation relation in Lemma 6.4.10.

Our aim is to prove that the Galois isometry for an integrable coaction is
a unitary iff the Galois homomorphism for the action is faithful (Theorem
6.4.8). We need some preparation for this.

Let N* € N € Nj be the basic construction for Ty, (see Definition 5.7), and
Ta T

denote o = @y oTh. Recall that we identify Z?(N)®.Z?(N) and £?(N>)
m
(cf. Theorem 5.7.5).

Lemma 6.4.3. If m € A, and z € A

PN

then po((1® m)a(2) € A,
and

G* (Mg (2) ®@Tar(m) = Mgy (pa((1 @ m)a(2))).
Proof. Choose m € '/Vwﬁ

x — w(méﬁ/ 2) coincides with a normal functional @s on the set of left

of the form (¢ @ w)(Vyy), with w € M, such that

!

4This corresponds to the map denoted as H in section 2.5 of the first part of this thesis.
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multipliers of 5];11/2 in M. Then we have, for x,y € 7,y 1, and z € A,
that

(A (@), 0 (m) 27, (07 (y*))
= Ay (@), ((®W)(U*)zAgy (67 (y7))
= {(L®B)(U)Apy (), 2hp (7Y (y")))
Apn ((t®@Ws) (), Ay (2075 (y*)))
PN (oY (1)2* (. @ Ws) (a()))
on (2" (L ®Ws)(a(x))y)
= Ws((Wha,y ()Apy () @),

)

using the KMS property. But since for a € .4;,,,, we have

<A<PM (a), i—\\M (m)) = ws(a),

by Lemma 6.1.20, this last expression equals

(G (2) ® By (1)), A (2) @ T'ag (m).

Since such m form a o-strong-norm core for f‘M, again by Lemma 6.1.20,
we have

-~ ~

Ay (@), 00 (m)zhp (05(57))) = (G(Apy (w)%/\w 1)), Aoy (2) @ a1 (m)),
for all m € Jt{oﬁ,. By the second part of Lemma 5.7.7, we then get

pa((1®@m)af(z)) € A,

and

~

Apy (pa((1@m)a(z))) = G (Apy (2) @ Tar(m))

for all m e A, and z € Ay,

!

Lemma 6.4.4. The isometry G is a left N x M-module morphism.

Proof. For x,y,z € T, 1., we have
G, (2)(Apy () CZDAW (2)) = G(Apy(y) §A¢N(Z))

= (Apy @0 )((zy)(2© 1))
a(z)G(Apy (y) %DAgoN(Z))'
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Hence Gy, () = a(x)G for all x € J,, 1, and then this is also true for
all x € N. Further, ifmeM’,neJ{% and z € A,,,, then

/ PN
pal(l@mn)a(2)) € A,

by the previous lemma, and we have

Pa(1@m)G* (Apy () @Tar(n) = s (Pa((1 @ mn)alz)))
= G"(Apy (2) @Tar(mn)),

hence G po(1®m) = (1®@m)G for all m e M. Since N x M is generated
by 1® M’ and «(N), the lemma is proven. O

Remark: This implies that 7y, (pa(z)) = G*2G for x € N x M, as G is an
isometry.

Lemma 6.4.5. The following commutation relations hold:

1. vi G =GVY

PN xM w2’
2. JNXM(;::GJNT

Proof. Using Corollary 5.7.6, the first commutation relation reduces to prov-
ing that for x,y € I, 1., we have

Viwunr (Roy @80, ) (@(2) (y®1))) = (Apy @Ay, (a0 () (0N (1) @1)).

Combining Propositions 6.3.9 and 6.3.15, and using their notation, we have
that for z,y € T, 1, and £ € Z?*(M), the following identity holds:

Viwa (@(@)(Dpy (1) @€)) = a(of™ (2))(Apy (07~ (1)) ® d3rE).

Now let a € 7,,,. Since o} commutes with %7, still using the notation of

Proposition 6.3.15, we have that x} (a) is then also in .7,,,, with

(38
oM (kM (a)) = kM (09M (a)) forte R,z € C.
Hence for a € ,,,, and x,y € T, 1., we get

Vorun 1® Jara 5 (@) Jar) (Apy ® Mgy ) (a(2)(y ©1)))

PN xM
= Vivun oy @A, ) (a(2)(y ® a))
(Apy ® Mgy )(a(of™ () (o™ (y) ® K1 ()
= (1@ Junt (075 (a)* Ta)(Agy @ Mgy, (oY (2)) (0™ (y) @ 1)),
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YM

and letting o 1> (a) tend to 1 o-strongly, we see that

Virun (Apy @0, )(a(2) (y®1))) = (Apy @Ay, ) (alof ™ (2)) (o (1) @1)),

which proves the first commutation relation.

From this, it follows that G*Vglo/]\%M o Will equal the restriction of V}p/fG*
1/2 1/2 1/2

o .@(Vw/NxM) Denote 7oy, 0 = JNvaw/NWI and T, = JNQVq,/Z , where

we recall that 7 denotes the Hilbert space implementation (w.r.t. the given

weight) of the *-operation on the von Neumann algebra. Then 7,,G* =

JNQG*V}/]&M on Q(V;/]?,NM). So to prove the second commutation rela-
tion (in the form G*Jnwn = Jn,G*), we only have to find a subset K of

.@(V}p/ixM) = D(Tpy ) Whose image under Vi,/ixM (or 7,

on ) s dense in
Z%(N x M), and on which 7,,G* and G*7T,,, ,, agree. But take

K = span{a(z)Apy,,, (1@m)a(y)) [ 2,y € Tpy 1., mE N, N ,/1{;;@/}.
Then clearly K € Z(T,y ) and Ty, (K) = K, since
Ton o (@(@)Apy o (1@M)(y))) = a(y*)AQONxM((l @ m*)a(z")).

Furthermore, if z,y € F,\ 1, and m € A,
6.4.3 and Lemma 6.4.4 that

pola(z)(1@m)a(y)) and pa(a(y®)(1 ®@m*)a(z"))
are both in .4, , and that

G*o(x) Aoy, (1@mM)a(y)) € D(1y,),

N Ag ., we get from Lemma
M

with
TG () Ay (1@ Ma) = TpuG () (Mg () ® Pas(m)
= T, Ap,(pala(z)(1@m)a(y)))
Agy (pala(y®™) (T @m*)a(a™)))
= Gra(y") Ay, (L@mM*)a(z¥))
= Gy (@) Ay, (L@ mM)a(y)).

Since K is dense in .Z2(N x M), the second commutation relation is proven.
0

Corollary 6.4.6. The map G is a right N x M-module map.
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Proof. This follows from the commutation of G with the modular conjuga-
tions: for x € No, we have

G(0N2($)) = G(JNzﬂNz(x*)JNz)
INsmMTN M (2*) Inu G
= Onwm(2)G.

Denote by p the central projection in N x M such that
ker(pa) = (1= p)(N x M).
Lemma 6.4.7. The projection GG* equals p.

Proof. By Lemma 6.4.4, G is a left N x M-module morphism, hence GG* €
(N x M), and GG* < p since G*pG = po(p) = 1. By the previous lemma,
GG™* commutes with Jxnwar, hence GG* is in the center Z°(N x M). Since
pa(GG*) = G*(GG*)G = 1, we must have GG* = p.

[

Theorem 6.4.8. Let M be a von Neumann algebraic quantum group, and o
an integrable coaction of M on a von Neumann algebra N. Then the Galois
homomorphism po : N x M — Ny is faithful iff the Galois isometry G isa
unitary.

Proof. This is an immediate corollary of the previous lemma, since G is
unitary iff p = 1 iff p, is faithful. O

We show now that ¢p, coincides with a weight introduced in [85]. We keep
using the notation introduced just before Lemma 6.4.7. Denote further by
(pa)p the restriction of po : N x M — Ny to p(N x M), and by @ the nsf
weight N« © (pa);1 on No.

Proposition 6.4.9. The weight Q2 equals po2.
Proof. If m € Jl{pﬁ and z €

i PN

then po((1 ® m)a(z)) € A5,, and we
can make a semi-cyclic representation A for @y on p(Z2(N) @ L2(M)),
determined by

Apal1@m)a(2) = Vi P(Apy,p (L@ mM)a(2)))
= p(Apy (2) ®Tar(m)),
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since, as recalled in Definition-Proposition 6.3.8, the linear span of the (1®
m)a(z) forms a o-strong*-norm core for Ay, ,,. By the lemmas 6.4.3 and
6.4.7,

Alpa((1®@m)a(2))) = G(Ayp, (pa((1®m)a(z)))).

Since G is a left N x M-module map, we obtain that also
(ZL?(Ny), G* o A,WNQ)

is a semi-cyclic representation for @s, and that (G* o A) C A,.

By the first commutation relation of Lemma 6.4.5, it also follows that the
modular operators for the semi-cyclic representations A,, and G* o A are
the same. Hence o = @2 by Proposition VIII.3.16 of [84].

O

Remark: This implies that Ty equals Ty o (pa), 1 with T4 the canonical
operator valued weight N x M — N, by Theorem IX.4.18 of [84]. This gen-
eralizes Proposition 5.7 of [85] by removing the hypothesis that p, is faithful.

It follows from Proposition 6.4.9 that G* coincides with the map
Z: LN x M) — L*(N)

which sends V%IS Apnni(2) to Ag,(pa(2)) for z € AL, (cf. the proof of
Theorem 5.3 in [85]). So we can summarize our results by saying that
the following natural square of N x M-bimodules and bimodule morphisms
commutes:

VA
)

L2(N, LN x M) (6.1)

AT

ZL2(N) cl?.i”?(N) —= LHN) ® LA(M)

Note that the above square was already constructed in the setting of alge-
braic quantum groups in [97].

For ease of reference, we write down explicitly how the bimodularity of G
(or G, recalling the convention made in section 6.3) works on the two main
parts of N x M.
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Lemma 6.4.10. Let « be an integrable coaction of a von Neumann algebraic
quantum group M on a von Neumann algebra N. For allx € N and m € M’,
we have

1. Gz ®1) = a(z)G,
m

2. G(7,(m) ® 1) =(m®1)G,

3. G(1 %DQN(iU)) = (1®0n(2))G,

el g?”a(m)) = (05, ®0,)((A ) (m))G.

Proof. As said, these equalities follow from the fact that G is a N x M-
bimodule map. For the fourth one, we remark that the right representation
Onxn of N x M on £?(N)® £%(M) is given by

QNNM(CV(.%)) = 9N($) @ 1

and
9N><1M(1 ® m) = U(l ® QM\/ (m))U*’

a fact which is easy to recover using that U = Jyym{(Jnv ® J ]\7) Now use
that also U = (7, ®¢)(Var), that Vi is the left regular multiplicative unitary
for M’ and that Vi (Jy ® Ji3) = (Ju @ J53) V- O

We introduce some more identities concerning modular automorphisms for

. . o . t _ t
integrable coactions. Recall from Proposition 6.3.15 ]\E[hat Vorau = Voy ®©

q}@, using the notation of that proposition. Then x;" = q}@a:qﬁt defines a
one-parametergroup of automorphisms on M, and v (z) = q}'f/‘,xqj\j[it defines

a one-parametergroup of automorphisms on M’.

Lemma 6.4.11. Let o be an integrable right coaction of a von Neumann
algebraic quantum group M on a von Neumann algebra N.

1. For x € N, we have a(of™(z)) = (6" @ kM) (a(z)).

2. For me M, we have of*(7l,(m)) = %&(Pytﬁ'(m))
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Proof. The first statement follows from the Proposition 6.3.9 and 6.3.15.
The second statement follows from the Lemmas 6.4.5 and 6.4.10, since for
m € M’, we then have

T (o7 F(m)) = VI (R (m) @ DV
= VLG*(1@m)GV, !
= ¢*1e (m)C
= 1w, (7 (1 (m))).
O

In particular, ofg(ga( ;7’8)) = §a( ]\_/ZZS) for each s,t € R, since an easy com-

putation shows that each C'( ;7’3) is invariant under 7;. Since o}? is im-

plemented by VgN on .Z%(N), we obtain:

Corollary 6.4.12. The one-parametergroups VZZ/N and 5a(5]\_7is) commute.

We denote the resulting one-parametergroup of unitaries by

it it ) (gt
PLPN = VSON Ga(5]\7)

Proposition 6.4.13. Let o be an integrable right coaction of a von Neu-
mann algebraic quantum group M on a von Neumann algebra N. Then N
is invariant under Ad(PY).

Proof. We only have to show that IV is invariant under Ad(?r(’l(CM\(é%)).

But for any group-like element u € M , we have, denoting by & the dual
coaction, that

a((l®@u)a(@)(1®u’) = (1Queu)(a(r)®1;)(1@u" @u®)
= ((1®u)a(:n)(1®u*))®1]\7,

for x € N, and so, by the biduality theorem (Definition-Proposition 6.3.7),
we get 7 (u)z7! (u)* € N after applying pq. O

We denote the resulting one-parametergroup of automorphisms on N by

PN . . it —it
" N—->N:ix—> P, aP, "
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Proposition 6.4.14. Let o be an integrable right coaction of a von Neu-
mann algebraic quantum group M on a von Neumann algebra N. Then the
following identities hold for x € N:

a(mf N (2)) = (7Y @ 1) (),
(¥ (2)) = (of ¥ @ o) (a(2)),
a(ofV (x)) = (17N @ ai)(al@)).
Proof. By Lemma 6.4.11, we have
aoofN = (ofN ® Ad(0y,) ™M) o a.
Further, we have
o(Ad(0a (%)) (2)) = (1 ® Ad(C7(6L))) (o))

for € N, by the proof of the previous proposition. Now by the first
formulg of Theorem 4.17 in [92], we have (JﬁéﬁtJﬁ)P]\}” = V3 So
Ad(éﬂt)TﬂAd(JﬁéﬁtJﬁ) reduces to o™ on M. This proves the second
formula.

As for the first identity, we have, using the second identity, the coaction
property of a and the identity Ay 0 o™ = (6™ @ 7M) o Ay, that

(a®L)o(TfN®TtM)oa = (JfN®U%®TtM)O(L®AM)OCK
(t@An) o (of¥ @) o

(a®u)oaor/N.

Thus the first identity follows by the injectivity of «.

The third identity now easily follows from the first identity, the fact that
Ad(C’M\(éﬁt)))(m) = (eM7M)(m) for m € M (which again follows from
(JM5§tJM)PA}it = V,,;"), and again the identity

a(Ad(0a(55) (@) = (+® Ad(C;(55))) (a(x))

for z € N.
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N PN

Lemma 6.4.15. The one-parametergroup 7/ satisfies pn o/ N = V}fwgoN,

and if x € N, then
i 2
Pl A (2) = V{7 Ay (77 ()-

Proof. The first statement easily follows since

onot/N = po(in®¢m)oaorN

poof™ oy @ ppro™) oo

vigpoat o by @) oa
= V]z\tdsof\ﬂ
using the identities of the previous proposition.

By the first statement, Ad(GAa (61‘?;))(35) € Ny for v € A, and the second

PN
statement is equivalent with

~

VDo) A () = Mg (Ad(Ba(029)) (2)),

where we remark that the right hand side also defines already a one-parameter-
group of unitaries.

Now taking x,y € I, .., we have
GOy () © D (1) = (L OO () (A, @ Aar)(a(a)(y @ ).
Since JM(S%JM\ = V%Pﬂ}it and
o(Ad(@a (6= (@) = (1 © Ad(B (5 (a(a)),

we get that
G4 Il A (1)) © Mgy (1) = G (Mg (Ad(Ba (G () @ A (1):

Since G is an isometry, and z,y were arbitrary, the result follows. O

6.5 Closed quantum subgroups

The following definition is taken from [89], Definition 2.9.
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Definition 6.5.1. Let M and My be von Neumann algebraic quantum groups,
and
F:M—- M

a unital normal *-homomorphism. We say that (M, F') is a closed quantum
subgroup of M when F is faithful, and

(F®F)oAp, =ApoF.

The closedness in the foregoing definition is why we can define this concept
on the von Neumann algebraic level (see the discussion after Definition 2.9
of [89]). The general notion of a quantum subgroup is treated in [54].

When convenient, we identify M; with its image F'(M7), and we then just
say that M is a closed quantum subgroup of M.

Associated to a pair consisting of a von Neumann algebraic quantum group
and a closed quantum subgroup, there are two coactions of the dual of the
smaller one on the dual of the bigger one, resp. by ‘left and right translation’.

Proposition 6.5.2. Let (]/\4[\1, ﬁ) be a closed quantum subgroup of a von Neu-
mann algebraic quantum group M. Then there is an integrable left coaction

v M — M1 ®M
of My on M, given by
(&) = WEL@a)Wp € B(L*(M1) ® £2(M)),

where Wg := (L, ®}?’)(WM1) coincides with the unitary implementation of
~v. Furthermore, the left coaction vy commutes with the right coaction Ay
of M on itself.
There also is an integrable right coaction
a:M—- M ) M1

of My on M, given by

a(z) = Va(r ®1)VE e B(L*(M) ® £*(My)),
where Vi = ((Cyj 0 Fo C]\i/[i) ®tar, ) (V) coincides with the unitary imple-

mentation of . This right coaction commutes with the left coaction Ay of
M on itself.
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Proof. We only sketch the proof for the right coaction. We have
(Agp @ e, ) (V) = (Vi) 13(Vip)as,
SO
(Va) 12 (V)23 (Vir)iz = (V)1s(Vp)2s
and
(Ve)2s(Var)12(Vi)3s = (V)i2(Vip)1s.

Since M is generated by the second leg of Vi, we have that «, as defined
in the proposition, has range in M ® M;. Since also V} is clearly a unitary
corepresentation, « is a coaction.

Further, the stated equalities also imply that for z € M, we have

(Ap ®un)a(r) = (Va)i2(Ve)13(Ve)2s(z @ 1® 1)(Ve)33(Va)1s(Var)is
= (Vp)2s(Va)12(z @ 1@ 1)(Var)12(Vp)33
= (LM®04)AM(:E).
So we are in the situation stated after Proposition 12.1 of [54]. By Propo-
sition 12.2 of [54], ¢p is an a-invariant nsf weight on M, and then an

adaptation of the argument in Proposition 4.3 of [85] shows that the unitary
implementation U of « is given by

U(AwM (x) ® AtﬂMl (y)) = (AiﬁM ® A</7M1 )(a(w)(l ® y)),

with z € Ay, and y € A, .

Now choose w € M, such that w(- (5]1\42) extends from the space of left mul-

tipliers of 5]1\//[2 to a normal functional ws on M. Then

(W) Wip) @ U (Aysy, (2) © Mgy, (9))

(A ® Ay ) (w5 @ tar @ ey ) (A ® tary () (1 @ y))
(A ® Ay )(a((ws ® ear) A (2)) (1@ y))

= U((w@ ) (Wi @ )(Ay,y, (2) © Mgy, (),

which implies U € M\ "® Mj. A similar calculation also shows that

(Var)12U13Ua3 = Uas(Vir) 12,

which implies that
(A @) (U) = UrsUas
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since V) is the left regular multiplicative unitary of M.

Now since both U and V3 implement «, the first leg of U*V lies in M A
M =C- 1p(e2(my)- Hence there exists u € My with

U= Vﬁ(l R u).

But then the last equation in the previous paragraph, combined with the
fact that I preserves the comultiplication and that (A ® tar)(Vr) =
(Var)13(Var)a3, implies that

(Va)13s(Vp)23(1®@1®@u) = (Va)13(1@1®u)(Vp)23(1® 1@ wu),

which shows «w = 1. Hence U = Vﬁ,.
O

One further has that the above coactions a and « are related by the formula
ao Ry = (Ry @ Rapy )7,

Now let ]/\/[\1 be a closed quantum subgroup of the von Neumann algebraic
quantum group M. Let aj; be the associated right coaction of M; on M.
Suppose ap is a right coaction of M on a von Neumann algebra IN. Then
(N ®apr)an(N) € any(N)® M, for by Proposition 6.3.5, we only have to
observe that the maps (15 ® Ay ® tar,) and (any @ ear ® Lar,) coincide on
the range of (1x ® apr)an, which follows by the equivariance of aps and the
fact that ay is a coaction. Then it is easily seen that

Qan,1 = (Oé]_vl X //Ml) o (LN X OéM)OéN
defines a right coaction of M; on N.

Definition 6.5.3. In the above situation, we call an 1 the restriction of an
to Ml.

Similarly, one can restrict unitary right corepresentations. For this, we
recall that unitary right corepresentations for a von Neumann algebraic
quantum group M; are in one-to-one correspondence with non-degenerate
right *-representations of ﬁqf, the universal C*-algebra associated with its
dual. Then if ]\71 c M is a closed quantum subgroup, we also have a
non-degenerate inclusion le\”f c g“, and then the restriction of a unitary
right corepresentation U of M to Mj is defined to be the unitary right
corepresentation Uy of M; corresponding to the restriction of the associated
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right *-representation of At to z@f It is not hard to see that, alterna-
tively, Uy is characterized by the fact that (¢ @ yar)(U) = Uy,12U13 (or also
(t®an)(U) = Ui2Uy 13), where vy and o are the canonical left, resp. right
coaction of My on M.

Since coactions come with canonically associated corepresentations, it is a
natural question to ask if the restriction process preserves this correspon-
dence. This is answered by the following lemma.

Lemma 6.5.4. Let M\l c M be an inclusion of von Neumann algebraic
quantum groups. Let an be a right coaction of M on a von Neumann algebra
N, and U its canonical unitary implementation. Let a1 be the restriction
of an to My, and ﬁl the restriction of U to My. Then Ul s the camonical
unitary implementation of an 1.

Proof. Unfortunately, there seems to be no alternative but to follow again
from the start the strategy of the proof of ‘U is a corepresentation’ from
[85], Theorem 4.4. Indeed: Let U; be the restriction of U to M;. Then we
have seen that (¢®@~yy)(U) = (~]1712U13. Hence we only have to show that the
same identity holds with U, replaced by Ui, the canonical implementation
of an . Since the full proof would require considerable overlap with [85],
we will only sketch how the procedure should be adapted to our situation.

To make the comparison with [85] more straightforward, we will henceforth
work in the setting of left coactions and unitary left corepresentations. That
is, we now suppose that we have a left coaction vy of M on a von Neumann
algebra NN, with canonical unitary implementation U (in the sense of [85]).
We denote by 7,1 the restriction of vy to M, and by U the restriction of
U to M;. We denote by U; the canonical implementation of vy 1. We want
to show that?®

(an ®)(U) = Ur23Uss. (6.2)
Suppose that Y is an arbitrary von Neumann algebra, and let
INQY = INQy i N®Y > MRINQY

by the amplified coaction of 7. Then as in Theorem 4.4 of [85], it is easy to
see that the unitary implementation of yygy on £2?(M)®.L*(N)®.L*(Y)

°In [85], there is a difference in convention concerning what a left corepresentation is,
and rather U™ is a left corepresentation in our terminology. Hence the change of order in
the equation (6.2).
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equals U ® 1p(¢2(yy). Since restricting and amplifying obviously commute,
we can thus replace v by YvgB(22(M))-

Now by [85], YngB(22(M)) 18 cocycle equivalent with a bidual coaction.
Hence we should show that the equality (6.2) holds for integrable coac-
tions vy, and that if it holds for one coaction, it also holds for any cocycle
equivalent coaction.

We first prove the latter stability property. Let ¥ € M ® N be a yy-cocycle,
and By the cocycle perturbation of yx by 7. Note first that (tpr, ® Ay ®un)
or (¢tar, @ty ®yn) applied to Y55 (v ® v ) () produces the same element.
By Proposition 6.3.5, there exists ¥ € M; ® N such that

(v @ N ) (V) = Va3 (ear, @ ) (N1)-

Some further calculations then reveal that 77 is a 1-cocycle for vy 1, that
the restriction By 1 of Bn to M; is precisely the cocycle perturbation of vy 1
with respect to 71, and that also

(apmr @ en)(V) = N 23t @ YN,1)(V).

Then Proposition 4.2 of [85], together with the final calculation appearing
in that proof, show that the equality (6.2) holds for the unitary corepresen-
tation associated with ~y iff it holds for the one associated to Gy.

We now suppose that vy is integrable. First of all, note that there exists a
strictly positive dp,nMy such that var(0%;) = dif;, ®d%;. In fact, dyy, is just
the restriction of the unitary one-dimensional corepresentation §%; to Mj. So
each dﬁ\tﬁ is a glﬁoup—like element, hence invariant under 7™ and satisfying
Ry, (dﬁ\t/h) = dﬂf Now let 1 be an nsf weight on N7V, and put ¢n = poTy,
where T, = (Y ® ty)yn-. One checks that U € My ® B(Z?(N)) satisfies

(e ® VU Apy (@) = Apn (W72, @ )y (@)

for £ € @(d}\ﬁ), ne L* M) and z € A,,. (Compare Proposition 2.4 of
[85].)

The proof is finished once we have shown that U; is precisely the unitary
implementation of yy,;. But reading the proof of Proposition 4.3 in [85],
we see that the whole discussion still works for the coaction vy ;1 of Mj,
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replacing however the 55411—invariant weight 6 there by the dﬁl—invariant
weight 1, and replacing every occurence of dps, by dps,. Indeed, since we
have remarked that dps, is invariant under the scaling group and inversed
under the unitary antipode, we have that dﬁ'\t/h commutes with Vi]\i/h and 7,
since these implement respectively the scaling group and the composition
of the antipode with the *-operation. Also the commutation of U; with

dﬁ'\t/[l Vi]\i/ll ® VzN still holds true: this easily reduces to the identity

(A @) o (M @) oywa = i o of ™,

which in turn reduces to known identities by applying (¢ ® yx). Since these
two facts are the main ingredients which make Proposition 4.3 of [85] work,
we are done.

O

One can also induce coactions from a smaller quantum group to a bigger one.
Let again ]T/I\l be a closed quantum subgroup of a von Neumann algebraic
quantum group M. Let ~var be the associated left coaction of M7 on M, and
suppose that we have a right coaction oy, of M; on a von Neumann algebra
Nj. Then we can create a new right coaction ay = Inds(apy,) of M on the
von Neumann algebra

N = IndM(Nl) = {Z € N1 QM | (aNl ®LM)Z = (LN1 ®"}/M)Z},

defined as
an = (tn, ® App).

Definition 6.5.5. In the above situation, we call ay = Indy(an,) the
induced coaction (of ap, along M).

Lemma 6.5.6. Let M\l be a closed quantum subgroup of a von Neumann
algebraic quantum group M. If an, is a right coaction of M; on a von
Neumann algebra N1, and ayn is the induced coaction, then Ny x My is
W*-Morita equivalent with N x M.

Proof. This is implicit in [87], which however works completely in the C*-
algebraic setting. We therefore only give a quick sketch of the proof.

Denote # = £?(N1)®.L%(M). We will make 7 into an N x M-Nj x M;-
equivalence correspondence. First note that by definition, N x M is a von
Neumann algebra contained in Ny ® (Ay (M) v (1@M"))" = N1®(M x M),
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hence it has a natural faithful normal left representation on 5. Now denote
by _# the set of z in Ny ® B(L?(My), £?(M)) such that

(an, ®)(2) = (Wip )asz13(( @ 7y YWy )23

Then a standard argument shows that the o-weak closure of ¢ #* coincides
with all operators z in N ® B(.Z?(M)) for which

(an, ®1)(2) = (Wi, )23213(Wiy, )23

But this is easily identified with the image of N x M. Since the o-weak
closure of #* ¢ is also seen to be exactly Ny x My, we are done.
O



Chapter 7

Galois objects for von
Neumann algebraic quantum
groups

In this chapter, we examine those integrable coactions of a von Neumann
algebraic quantum group M which are ergodic and have a faithful Galois
homomorphism. We show that in this case, the von Neumann algebra N
acted upon contains a ‘modular element’, which allows to create on N (and
£?(N)) a structure which is very similar to the one of a von Neumann alge-
braic quantum group. We then show that with this structure available, we
can turn 13, by which we denote the commutant of the associated right repre-
sentation of M on .Z?(N), into a von Neumann algebraic quantum group.
We then provide some more information about the global structures con-
necting M N and P and in particular examine the associated C*-algebraic
aspects.

7.1 Galois coactions

Definition 7.1.1. Let N be a von Neumann algebra, M a von Neumann
algebraic quantum group, and o an integrable coaction of M on N. We call o
a Galois coaction if the Galois homomorphism pe, is faithful, or equivalently,
if the Galois isometry G is a unitary (in which case we call it the Galois
unitary ).

We present some natural examples of Galois coactions.

219
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Example 7.1.2. Every dual coaction, or more generally, every semidual
coaction is Galois.

Proof. Recall from [85] that a semidual right coaction of a von Neumann
algebraic quantum group M on a von Neumann algebra N is a right coaction
a for which there exists a unitary v € N ® B(Z?(M)) such that

(a ® L) (7)) = 1)13(WM)23
holds. Such coactions are Galois by Proposition 5.12 of [85]. O

Example 7.1.3. Every integrable outer coaction is Galois.

Proof. Recall again from [85] that a coaction « of a von Neumann algebraic
quantum group M on a von Neumann algebra N is called outer when

NxMna(N)Y=C-1y

holds. Thus an integrable outer coaction is automatically Galois, since N x
M is then a factor. O

Our next example shows that the natural ‘quantum fibre bundle’ structure
associated to a quantum homogeneous space indeed comes from a Galois
coaction (which seems a prime requisite for any theory generalizing the clas-
sical theory).

Example 7.1.4. If My and M are von Neumann algebraic quantum groups,
and (M, F) a closed quantum subgroup of M, the associated right coaction
a of My on M is Galois. Conversely, if M and My are von Neumann
algebraic quantum groups for which there is a right Galois coaction o of My
on M, such that

(b @ )Apr = (Ap ® Lary),

then M\l can be made into a closed quantum subgroup of ]/\/[\, i such a way
that a is precisely the coaction by right translations.

Proof. First suppose that (]\/4\1, F ) is a closed quantum subgroup of M. De-
note ' = Czo Fo C]\i/ll, and denote
1

Vﬁ = (ﬁl@LM1)(VM1)'



7.2 Structure of Galois objects 221

Then we can make the following sequence of isomorphisms:
a(M) v (1@ M)
(M ®1) U VE1® M;])V;)"

MxM = (
(

= (M@ u(F'@)(Ag ()"
(
(

12

12

where we used that Vjy, is the left regular corepresentation for (]\//.7{, A M{)'
Since it’s easy to see that the resulting isomorphism satisfies the require-
ments for the Galois homomorphism (using that V is actually the unitary
corepresentation implementing «, by Proposition 6.5.2), the coaction is Ga-

lois.

Now suppose that we have a Galois coaction a such that (1p ® @)Ay =
(An ® tary ). Denote by (A7, Az, ) the universal C*-algebraic quantum

group associated with M , and similarly for M: 1. Then just as in Proposition
6.5.2, the unitary implemntation U of « is determined by

U(A¢]M () ® A<,0M1 (y) = (AIXJM ® A<PM1 )(a(z2)(1®y))

and further U € M'®M; with (Ag @ )(U) =

Uy3Uss. From this, it is easy to conclude that (]\71, Ta) 18 a closed quantum

forx € A}, and y € A,

My

subgroup of M , using the concrete form of the implementation of 7,. Since
also U = (7], ® ta, )(Vagy ), we also get that « is precisely the coaction
associated to the closed quantum subgroup (M1, 7, ).

O

7.2 Structure of Galois objects

Our main object of study from now on will be the Galois coactions which
have trivial coinvariants. We show that such coactions automatically have
a (unique) invariant nsf weight, but our approach is different from the one
for algebraic quantum groups: we will first search a 1-cocycle to deform ¢
(which will be of the form y;tj/ 2(5“, for some non-singular positive operator
OnnN), and then show that this deformation is an invariant nsf weight on N.
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Definition 7.2.1. If N is a von Neumann algebra, M a von Neumann
algebraic quantum group and oy an ergodic Galois coaction of M on N, we
call (N, an) a right Galois object for M.

In the rest of this section, we suppose that we have fixed some right Galois
object N for a von Neumann algebraic quantum group M. Then

Toy = (tn @ oum)an

itself will already be an nsf weight on N, so we denote it by ¢xn. Then
Ny = Non- We will from now on use a different notation for the stan-
dard GNS map: whenever working with a Galois object, we will write Ay
instead of Ay . We further denote o7V as of' and Vi as V. We keep
denoting the unitary implementation of ay by U.

For such a Galois object, N x M = N3 becomes the whole of B(Z?(N)),

Papy
and 3 = Tr(- Vy). Further, we can identify .#2?(Ns) with £?(N)®.Z2(N)
by the map

Ap, (AN (2)AN(y*)") = An(2) ® An(y)  forz,y € Ty
For z € B(£?(N)), we then have
TN, (x) = TN (T) ® 1, On,(x) = 1®0N(z),
while the modular structure of Ny is given by
Vi, = Vi@V

and

In, = 2(JIn ® JN).
We remark that now for z,y € A4, we have
G(An(z) @ An(y)) = D(An ® M) (an(2)(y ® 1)),

by a simple argument, and then also

(®@w)(G)AN(z) = Ap((w ® tar)an (2))

for all z € A, and w € N,.

The following piece of extra structure on N has already been obtained (see
the remark after Proposition 6.4.13).
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Definition 7.2.2. Let N be a right Galois object for a von Neumann alge-
braic quantum group M. We call the one-parametergroup

il :N—>N:x—>PgNmP@ff
the scaling group of the Galois object N.

PN

We will denote 77" as N, and P, as Py.

We prove some statements concerning the Galois unitary G for a Galois
object N (see Definition 6 4.2 and the discussion just before it). Note that
#?(N) carries the right M- *_representation 9a ~» and that we had denoted

P N
by Q ( 5 i ) the linking von Neumann algebra between the right

M-modules L*(M) and Z?(N).

Lemma 7.2.3. 1. GeO ®N.
2. G12U1z = (Var)13Gia.

Proof. The first statement follows by the second and third commutation
relation of Lemma 6.4.10. Since for w € M, we have (t®w)(U) = 7, ((t®
w)(Var)), the second statement also follows from the second commutation
relation of Lemma 6.4.10. O

The following is just a restatement of Lemma 6.4.5.

Lemma 7.2.4. The map G satisfies the identity
G(JIn ® JN)S = SUS(J5 ® Jn)G.
Now we prove a pentagonal identity:

Proposition 7.2.5. Let N be a right Galois object for a von Neumann
algebraic quantum group M. Then

(Wi7)12G13G23 = G23Gia.

Proof. For x € A, and w € B(L?(N))«, we have (w® ) (an(z)) € Ao,
by Lemma 6.3.10. Now consider w of the form wy () Ay (z) With y, 2 € A5
Then

(1o @w)(G)An(2) = Anr((w ® war)(an(2))).
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Using the closedness of the map Ajs, we can conclude that the previous
identity holds for all w € B(Z?(N))x.

Now for z € A, w € M, and w’ € N,, we have, using Wg = EWeE
(157 ®W) (W) (15 ® W) (G)An ()

A
(W ®w®LM)((éN®AM)(aN($))))
Ay (W @w® ) ((an ® war)(an(x))))
Av((w®w') 0 af) ® tar)(an()))
= (159 (wBW) o a))(G)An(2),

from which we conclude
(Wip12Gis = (15 @ o) (G).
Since 5 o
(1o ®aR)NG) = G3G12G35

by the first commutation relation in Lemma 6.4.10, the result follows.

O

Remark: When N and M have infinite-dimensional separable preduals, then
choosing a unitary u : Z?(M) — £%(N), the unitary v = G(u ® 1) in
B(Z*(M))® N will satlsfy (t®an)(v) = (Wgj)13v12. So in this case there
is a one-to-one correspondence between Galois objects and ergodic semi-dual
coactions. The same is true when either N or M are finite-dimensional, since
in this case one can show that they then both have the same dimension.
However, we do not know of an easy argument showing that for general Ga-
lois objects, an orthonormal basis of .Z2(IN) has the same cardinality as one
for #?(M), which would make the previous statement true for any Galois
object.

We have the following density results:

Lemma 7.2.6. 1. The space
L={w®w)(G)|we B(L*N), L*(M)).}

is o-weakly dense in N.

'We do not know of a concrete reference for this fact, but it follows easily from the
results in the tenth chapter.
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2. The space ~
K ={(15®w)(G) |we B(L*(N)).}

18 o-weakly dense in 0.

Proof. By the pentagonal identity for G in Proposition 7.2.5, the linear span

of the (w®¢)(G) will be an algebra. Further, for any x € .45, and m € .4

M
we have

(1 ® m*)aN(x) € '//(L®¢M)

and

(WA x (@) Aem) @G = (@) (1@ m*)an(z)),
by an easy calculation. From this, we can conclude that the o-weak closure
of L coincides with the o-weak closure of the span of

{(t@w)(an(x)) |we My,x € N},

so that this o-weak closure will be a unital sub-von Neumann algebra of
N (see also the proof of Proposition 1.21 of [92]), which is known to be
dense in N (a fact which holds for any coaction «). For completeness, we
give a proof of this last fact. Suppose w € N, is orthogonal to L. By
the biduality theorem (see [32], and also Theorem 2.6 of [85]), we have
that (an(N) u (1 @ B(ZL%(M))))" equals N @ B(Z%(M)). So for any
r € NQ® B(Z?*N)) and o' € B(ZL%*(N))«, (t ® w')(x) can be o-weakly
approximated by elements of the form (1 ® w')(x,) with x, in the algebra
generated by an(N) and 1 ® B(s), and any such element can in turn be
approximated by an element in the algebra generated by elements of the
form (1 @ w")(an(Tnm)), " € B(ZL?*(M)), and z,,, € N, by using an or-
thogonal basis argument. It follows that w vanishes on the whole of N, and
hence L is o-weakly dense in V.

For the second statement, note that, again by the pentagonal identity for
G, we have that K is closed under left multiplication with elements of the
form (1 ® w)(Wy;) for w € M,. Hence, as in the proof of Proposition 5.7.3,

it is enough to show that if z € N satisfies K - 2 = 0, then z = 0. But take
z,y € Ty, and m e Ng -, Then

(L@ Wy (@).an () (GHTar(m) = 7o (m)zAn (0N (y*))

by Lemma 5.7.7 and Lemma 6.4.3. Hence K* - #2(M) is dense in .Z?(N),
and necessarily z = 0. O



226 Chapter 7. von Neumann algebraic Galois objects

Proposition 7.2.7. We have the following commutation relations:
1 GV V) = (6,/'V I ® VG,
2. G(VE @ PY) = (VY @ PG,
3. G(PE @ PY) = (Pih ® PY)G.
Proof. The first identity follows immediately from Lemma 6.4.5 and Propo-

sition 6.3.15, while the other two follow by using the definition of G, the
implementation of Lemma 6.4.15 and the identities in Lemma 6.4.14. O

Lemma 7.2.8. For any m € M', the operator é*(m@ 1)@ lies in N'@QN.

Proof. Clearly, the second leg lies in V. Since Gy ®1)G* = oY (y) for
y € N, the first leg of G*(m ® 1)G must be inside N’. O

Remark: For general Galois coactions «;, this lemma is still true if we replace
N'®N by 7rlN2 (N) n N3, where Nj is the next step in the tower construction:

N < N < Ny < Ng,

where Nj is precisely B(.Z?(N)) ® N in case of a Galois object. However,
it is the degeneracy of 7rlN2 (N)" n Nj, i.e. the fact that it can be written as

an ordinary tensor product, which allows us to continue.

Consider H* = G*(JMéf\ZJM ® 1)@ in NN® N.

Lemma 7.2.9. There exist non-singular positive h, k affiliated with respec-
tively N' and N such that H* = h* @ k™ for all t € R. Moreover, we have
an(k?) = Kt ® 6, forteR.

Proof. We show that H(B(Z£?*(N)) ® 1)H™% = B(Z?*(N))® 1. Since
B(ZL*(N)) = pay (N x M), we only have to show that H*(N ® 1)H % =
(N®1) and H' (7!, (M")®1)H * = (7!, (M')®1). Now the first equality
is clear as the first leg of H* lies in N’. As for the second equality, applying
G(-)G*, this is equivalent with Ad(JMdf@JM)(M\') — M, which is easily
seen to be true.

Denote by h a positive operator which implements the automorphism group
Ad(H™) on B(L?(N)), so

Ad(H")(z @1) = (Ad(h")(x)) ® 1
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for all x € B(Z?(N)). (This is well-known to be possible for .#?(NN) separa-
ble (see e.g. Theorem XI.3.11 of [84]). An easy maximality argument shows
that, in this case, it holds regardless of separability.) Then h is non-singular,
with h affiliated with N/, and H® = h® ® k™ for a positive non-singular k
affiliated with V.

Note now that W;?(JMéf\ZJM ® I)WM\ = JMéj\’}JM ® 8% which can be
computed for example by Lemma 4.14 and the formulas in Proposition 4.17
of [92]. Then using the pentagonal identity for G, we have

(L@aW)H™) = GosH{hGis
= GoGh(Indly Ty ®1®1)G12G
= Gis(W)12Gas(Jmdi I @ 1 ®1)Gas(Wi7)12Gs
= Gi3(IndiIv ® 0%, @ 1)Grs
— W@t @k,

so that an (k") = k" ® 0%,
0

The operator k which appears in the lemma is determined up to a positive
scalar. We will now fix some k, and denote it as .

Definition 7.2.10. We call d5 the modular element of the Galois object
N.

Lemma 7.2.11. With the notation of the previous lemma, we have
1. h=Jnoy' I,
2. N (5ig) = vistoie,
3. TN (6%) = 5%
Proof. Denoting again H = CNJ*(JMéf\tJJM ®1)G, we first prove that
Y(JIn @ IN)HY (Jy @ Jy)E = H™.
Using Lemma 7.2.4, the left hand side equals
G*(J53 ® IN)SU*S (6 Iy @ 1)SUS(J 53 ® In) G-

As U € B(Z*(N)) ® M, this reduces to G*(J57Jar0% JarJ5; ® 1)G. Since
Jar commutes with Jg7 up to a scalar of modulus 1, and since 5?4 commutes
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with J57, we find that this expression reduces to G*(Jyd Iy ®1)G = H™.
So

NG TN @ Inh™ Iy = b @ 6%,
which implies that there exists a positive scalar r such that h# = ri.J Nd};{}J N-

But plugging this back into the above equality, we find that r?* = 1 for all
t, hence r = 1.

For the second statement, we easily get, using the first commutation relation
of Proposition 7.2.7, that

(VR ® VR)(INGR N @ 6%) (V' @ V') = (JnONIx ® OR)-

This implies that there exists a positive number vy such that of¥ (65) =
VS84, We must show that vy = vy.

But we know now that 6% is analytic with respect to of¥. So if x € My s

then also 0% and 6%z are integrable. We have for such z that, choosing
some state w € N,

on(onr) = eu((w®)(an(65z)))
(857 (w(0% -) ® 1) (an(z)))
virem ((W(oF ) ® 1) (an(2))d5)
Virpmr (WO - 05") ® 1) (an(2d%)))
= vien(xoR).

This shows o, (6%) = v5,6%, which implies vy = ).
As for the last statement, this follows from

an(r o2, (08) = (@7 e)an(0x)
= N ®7 o2 (0hr)

—ist

vy tan (0%).

O
By Connes’ cocycle derivative theorem (Theorem 5.2.8), we can now make
the nsf weight ¢ := pn ((5%2 . 5]1\{2), by which we mean the deformation of

42 .
N by the 1-cocycle wy = 1/3\2 /2(5}(5,.
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Theorem 7.2.12. Let N be a right Galois object for a von Neumann al-
gebraic quantum group M. Then the weight Yy is invariant with respect to
anN.

Proof. Let x € N be a left multiplier of 5]1\{2 such that :Cdjl\{z is an element
of A,y. Then x € A4}, and there is a unique semi-cyclic representation

[y for ¥y in £?(N) such that ['y(z) = AN(xéjl\{Q) for all such x (see the
remark before Proposition 1.15 in [56]). Choose £ € .@((5;/[1/2). Then for any
ne L%*M), we have (LQuwg n)an () a left multiplier of 51/2, and the closure
of ((t® wgm)a]\/(:v))é]l\{z equals (1 ® w@;/ggm)a]\/(x&lﬂ). By the concrete
formula for U in Definition-Proposition 6.3.11, we conclude that this last
operator is in .4, , and that its image under Ay equals (t@wg »)(U)I'n(x).
Then by the closedness of I' 7, we can conclude that for x of the above form,
(t@w)(an(x)) € Ay, for every w e M,, with

In((t®@w)(an(2))) = (t@w)(U)'N(2).

Since such x form a o-strong-norm core for I'y, the same statement holds
for a general x € #;,,,. From this, it is standard to conclude the invariance:
take w = wee € M) and © = y*y € .//[JN. Let & denote an orthonormal

basis for .#?(M). Then by the lower-semi-continuity of 1, we find

YN (L @uwee)lan(y™y)))
= INQ(®uwee, )an(®)* (L @uweg, ) an(y))))

n

DN (@ weg,)(an(®)* (@ wee, ) an(y)))

i IPN (e @ wee, ) (v (@)))]?

Zn] [0 @wee, ) (V)TN ()]

<71:N(y)7 (D, ®we, )(UM) (e ®@wee, )(U)TN(Y)))

n

Tn(y), (L ®@uwee)(UU)TN(Y))
YN (Y Y)we e (1),

hence Yn((t @w)(an(z))) = Y (2)w(1).
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Remark: Tt is natural to ask if there is a corresponding result for a general
Galois coaction . We briefly show that one can not expect too much: there
does not have to exist an invariant nsf operator valued weight 77, i.e. an op-
erator valued weight N* — (N®) "% guch that T/ ((1Qw)a(z)) = w(1)T.(x)
for w € M and = € .#7, . To give an explicit example, suppose « is an
outer left coaction of a von Neumann algebraic quantum group M on a
factor N. Then by outerness, there is a unique nsf operator valued weight
(M x N)* = a(N)*** (up to a scalar), namely (: ® ¢5;)@, where & is the
dual right coaction. But if M is not unimodular, then this operator val-
ued weight is not invariant. On the other hand, this does not rule out the
possibility that there exists an invariant nsf weight: for if the original coac-
tion has an invariant nsf weight ¢ (for example, the coactions occurring in
[86]), then one checks that x € (M x N)* — ¢o((tar ® ¥v)()) € [0, +0]
is a well-defined @-invariant nsf weight on M x N. We do not know of any
example of a Galois coaction without invariant weights.

Lemma 7.2.13. The one-parametergroups P}‘\? and JNéf\t,JN commute.

Proof. Choose z in the Tomita algebra of ¢p. Since Pﬁ, by its definition,
commutes with each V%, we have that 7/¥ induces automorphisms of the
Tomita algebra of ¢y, hence

PNINAN(z) = PNAN(0))(2)*)
= VAN (2))
= JNP]Z'\;AN(.T),

and Pﬁ commutes with Jy.

Further, since ¥ (6%) = 8%, we also have that Pil commutes with 0%, and
the lemma follows.
O

By the previous lemma, we can define a new one-parametergroup of unitaries
V% = PilIN6% JN.

Proposition 7.2.14. Let N be a right Galois object for a von Neumann
algebraic quantum group M. Then Vilt%’N(m)Vé\% = @l (oM (m)) for

N «
me M.
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Proof. By an easy adjustment of Lemma 6.4.15, and using the relative invari-
ance property of 4%, we get that V%Adm () = Ay (¥ (2)0") for x € A,
If we apply (¢t ® w)(U) to this with w € My, then, using the commutation
rules between ay, 77 and 0%, we get

(L @W)(U)VEAyy (@) = Ay (7 (L @w (T ()83 an (2))5,").
This shows

VR (@) (Vi) Vi = &, (@ w(r ()5, (Va)).

But by doing this same calculation with N = M, and using that in this case
Py, 0p and Vi;, as constructed for the Galois object (M, Aypr), coincide
with the original operators, by the known commutation relations for von

Neumann algebraic quantum groups, we get that
VA(@w) (Vi) Ve = (®@w(m ()8,/)) (V).

Since V%’} = A?;f, we get that

Vi R (0@ V)T = Ry (0 (L0 (Vin)):

N ~ON

Then of course the same holds with (t«®w)(Vas) replaced by a general element
of M’, thus proving the proposition.
O

Proposition 7.2.15. The following commutation relations hold:
1 (Vi ®@ViLG =G(VieVi),
2. (VL@ P{H)G = G(VE @ PRoY).

Proof. The first formula follows by the second formula in Proposition 7.2.7,
and the fact that the second leg of G lies in N. The second formula follows
from the fact that also V%} =J M5§@J A Pl then using the third formula of
Proposition 7.2.7 and the first formula in Lemma 7.2.11 together with the
definition of dy.

O

Proposition 7.2.16. Up to a positive constant, 1y is the only invariant,
and oy the only dpr-invariant weight on N.
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Proof. The claim about ¢y follows immediately by Lemma 3.9 of [85] and
the fact that ap is ergodic. The second statement can be proven in the
same fashion.

O

We remark that of course all results hold as well in the context of left Galois
coactions: if (N,7yy) is a left Galois object for a von Neumann algebraic
quantum group P, then (N,~3’) is a right Galois object for PP, and in
this way, we can apply the constructions of this section to left Galois objects.
In particular, with ¥y = (p®t)vn, by the Galois unitary for the left Galois
object (N,yn) we shall mean the unitary

H: 2*(N)®Z2*N) - L*N)® ZL*(P)

A¢N([IJ) ®A1/JN(y) - (Awp ®A1/1N)(’YN(:E)(1 ®y))7 T,y € ‘/KZJN'

We end this section by showing that a right *-Galois object for a *-algebraic
quantum group (see Definition 3.9.1) can be completed to a right Galois
object for the associated von Neumann algebraic quantum group. The fact
that a *-algebraic quantum group can be completed to a von Neumann
algebraic quantum group (or rather a C*-algebraic quantum group) was
shown in [53].

Proposition 7.2.17. Let A be a *-algebraic quantum group, and M its
associated von Neumann algebraic quantum group. Let (B,ap) be a right
*-Galois object for A. Then one can construct canonically a right M-Galois
object N, whose underlying von Neumann algebra contains B as a o-weak
dense sub-*-algebra, and such that an(b)(1®a) = ag(b)(1®a) for be B
and a € A.

Proof. By the discussion in Section 3.9, we conclude that B, endowed with
the scalar product

by = pp(b* - b),
is a pre-Hilbert space. Let .#?(B) be its completion. We will denote the
image of b in .Z%(B) by Ap(b).
Now define
Gp:Ap(B)®Ap(B) > Ay (A) ®Ap(B) :

AB(b) ®AB(b/) — AM(b(l)) ®AB(b(O)bI).
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This is easily checked to be a surjective isometry, hence it extends to a
unitary

L(B)® £%(B) » £X(M) @ £*(B),
which we will denote by the same symbol. Clearly, if b,0’ € B and a € A, we
have

(WA 5 () Apr () @ ) (GB)AB(Y) = Ap(pala*buy) boyb).

Since any element of B can be written as a linear combination of elements
of the form 4 (a*b(1)) by, we conclude that the operators

7e(b) : Agp(B) — Ag(B) : Ag(t)) — Ag(b)

extend to bounded operators on .#%(B), and then 7 clearly becomes a faith-
ful *-homomorphism B — B(£?(B)). We will from now on identify B with
its image wp(B).

Let N be the o-weak closure of B, which is then a von Neumann algebra
containing 1p(¢2(p)). Since

Crb@NEHaO1) = af(B)(a®1),
which lies in A ® B, we must have that G‘B(N® 1)@}‘3 C N® M. Denote
an: N> NQM :z - XGp(zQ@1)GEX.

Then a is a normal unital faithful *-homomorphism. Moreover, for b, b’ € B
and a € A, we have ap(b)(1® a) = an(b)(1 ® a) and (V' ® 1)ap(bh) =
(' ® 1)an(b), and hence

(V'®1e1)((an@ur)an (1) (191®a) = (Y@1R1)((n@A ) an () (1®1®a),

from which we conclude that oy is a coaction.

We have to show now that (N, ay) is a right M-Galois object. First remark
that by Theorem 3.9.4, and the fact that op has positive eigenvalues, we can
extend op to a complex one-parametergroup af on B such that ai =op
(see the end of section 4.4). If we then define U(z)Ap(b) := Ap(cB(b)),
then we clearly have the structure of a Tomita algebra. Hence there exists
a unique nsf weight ¢ on N, such that pn(b) = ¢p(b) for b € B, and
moreover, we can identify Z?(N) with #?(B). We again denote the GNS
map for pn by Ay, and we identify Ap with Ay restricted to B.
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Now let b € B. Then for ¥ € B, we compute:

Wan ) Ay ) Tay (070) = om((Wayw)ane) @ )an(b*D))
= pu((pp @ )((V* @ Dap((d*d) (¥ ®@1)))
pa((pB®@)((V* @ 1)ap(b*b) (¥ ®1)))
= pp(b*b)pp (VD).

By lower-semicontinuity, we conclude that T, (b*b) is bounded, and equal
to op(b*b). Hence b€ A7, , and so ay is integrable.

Now note that similarly as for ¢p, we can extend ¥p to an nsf weight ¥y
on N. Then we can construct a unitary U, uniquely defined by the property
that

U(Ayy (0) ® Mg, (@) = (Ayy @ Mgy ) (ap(b)(1®a))
for all b€ B and a € A. An easy computation shows that
Vb)) U*(1®a) = ap(b)(l1®a)
for be B and a € A. Hence
Ux®1)U* = ay(zx)

for 2 € N. Further, for a,a’ € A, and w = Wy, (a),A,,(a’)> We have

(t®@w)(U)Ap(b) = Ap((t®@¢a)(1®a™)ap(d)(1®a))).

Using the modular property and the fact that A? = A, we see that for all
wE A the left module action of A extends to a homomorphism 7, : A

(22( )). Now if b € B, then b is in the Tomita algebra of ¢x. If then
a€ A, and w = pa(a-), we get, for b’ € B, that

On(D)Ta(@ AN () = An(w(bfyy)bjooZ; (b))
= Ay (@A(ab/@)) ,(o)UBi/Q(b))
= An(pp(aP)allob, (b)),

by Proposition 3.4.1. By the Corollary 3.5.2, we conclude that 6y (B)ma(A)
consists of all finite rank operators of the form }, ZAN(bi)l/*\N(b’.)v where
b;,b; € B. In particular, On(B)ma(A) is o-weakly dense in B(Z2%(N)).
Now if x € NV it clearly commutes with 05 (B). Since z is a coinvariant,
it commutes with the first leg of U, and hence it also commutes with all
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~

elements of m,(A). So then x must be a scalar multiple of the identity, and
we conclude that ap is ergodic.

Since the Galois isometry for ay clearly coincides with G, we get that N
is a right M-Galois object.
O

7.3 The reflection technique

In this section, we construct a (possibly) new von Neumann algebraic quan-
tum group, starting from a right Galois object. The main technicality con-
sists in constructing its invariant weights.

For the rest of this section, let N be a fixed right Galois object for some
von Neumann algebraic quantum group M. We use notation as in the

Qu Q2 | _
Q21 Q2

previous section. In particular, denote as before by @ = (

~

In the linking von Neumann algebra between the right M-modules

P

0
L?(M) and Z%(N). We will denote, as already indicated in the part
on linking von Neumann algebras (see section 5.5), the natural inclusion

~ 2 ~ A

Q<B ( 52((]\]\;)) ) by 792, and its parts as Wg’z, although we will also
2
~ w’
their parts in ) again.

use the notation 77;, or no symbol at all. We will also identify the @ij with
Lemma 7.3.1. We have é*(l ®]§7)WM c ﬁ@ﬁ

Proof. Let x be an element of N. As the first leg of W37 lies in M , and the

first leg of G is a left M'-module intertwiner, it is clear that for any m € M ,
we have

G*(1 Rr)Wi(057(m)®1) = (éaN (m) ® 1)G*(1 ® x)Wis.
On the other hand, we have to prove that for all m € M ,

G*(1® )W5(1®05(m) = (1 @aN (m)G*(1® )W (7.1)
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Now as G is a right N x M-map, we have
(1® 0oy (m)G* = G*(Rig ® Oy (A g (m)),

using the fourth commutation relation of Lemma 6.4.10 in a slightly adapted
form. Since also

W51 ®05(m)) = (R ®05)(Ag(m)) W,
the stated commutation follows from the intertwining property of x, as

r0(m) = @aN (m)x.
O

Denote the corresponding map by
Aﬁ:ﬁﬁ]’\\f@]’\}:xﬁé*(l@x)wﬂ//}
Then we can also define
Ap: 0500 2> Ag(x*)*,

and R L
A}g:P—>P®P:m—>é*(l®x)é,

since @21 = (@12)* and the span of @12@21 is o-weakly dense in P. Finally,
we denote by A@ the map

Q- Q®Q :xij — Ayj(zis), Tij € Qij,
where we denote AH = Alg, 812 = AN? 821 = Aé and 822 = AM. Then
Ag is easily seen to be a (non-unital) normal *-homomorphism.
Lemma 7.3.2. The map A@ 1§ coassociative.

Proof. This follows trivially by Proposition 7.2.5. O

Since JnT,,, (m)*In = Ty, (Jym*Jyr) for m e M, we can define a unital
anti-*-automorphism R5 : @ — @ by sending x € @12 to Jyz*Jn € @21,
and then extending it in the natural way.

Lemma 7.3.3. We have As(Rg(2)) = (Ry ®RQ)AZ§’(9§) forzeq.
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Proof. We only have to check whether

G*(1® InaJy)Wi = (In @ JN)SG*(1 Q@ 2)WS(Jn ® Jur)

for z € @12. But using Lemma 7.2.4 twice, once for N and once for M itself,
the right hand side reduces:

(JN @ INEG*(1 Q@)W E(Jy @ Jur)
= G*(J5@JINEU*S(1@2)W5E(Jy @ Ju)
= G*(J5Q®JIN)(1Q2)SViEWLHS(Jy & Jur)

= G*(l X JNl‘JM)WM\.
O

In particular, this provides P with the structure of a coinvolutive Hopf-von
Neumann algebra structure. Our next goal is to find a left invariant nsf
weight for it.

We have shown in Proposition 7.2.14 that the modular automorphism group
of pg; on M " can be implemented on .#?(N) by the one-parametergroup
V?\ﬁf = P]\}JNcS}f,JN. Then by Proposition 5.5.5, we can construct an nsf

weight ¢ 5 on P which has V & as spatial derivative with respect to 57 =

(‘DIM\' Then we can also consider the balanced weight v =vp® (;i 17 on Q.

Its modular automorphism group Jf Q, which we will denote by atQ , is then

implemented by V% G—)V% if we use the faithful representation 79?2 of @ on
LAN)® L*(M).

We make the identification
5 | 22P) LXN) -
(ZAQ): g Asg) = (( Z2(N) ZL*(M) )’WQ’(Aij))

of the natural semi-cyclic representations of @ w.r.t. 05, as explained in
section 5.5 (using the obvious notation-wise adaptation w.r.t = on the right
side). We then also write A;; = Ag for example, and we will also write

A7 ®A  for the restriction of the GNS-map of P5®¢g to M®N c L/I{p@@,@.

We will now provide another formula for G*.
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Proposition 7.3.4. Let N be a right Galois object for a von Neumann
algebraic quantum group M. Ifm € A, _ andx € Nm/l{pé, then A5 () (m®
1) € @(A]\A[®A]\7) and
(Ag @A) (Ag(@)(m®1)) = G*(Agp(m) ® Ag(x)).
Proof. Since
(1®pg)(m* @ 1)A1s(2)*Ara(z)(m®1))
= (@ep)((m* @Ay ) (m@1))

= @@(m*x)m m

for z € @12 and m € M\, it is clear that 312(x)(m ®1)€e .@(Klg ® f\u) for
meE Jl{pﬁ and x € Q12 N Ji{p@, and that the map
Aga(m) @ Aja(z) = (A2 ® Ara)(Ara(z)(m @ 1))

extends to a well-defined isometry. We now show that it coincides with G*.

Let z be an element of 4 _ . Then it is sufficient to prove that
Ap(@)(Ag(m) ® A, (2) = (1@ T, (2))G* (Ae2(m) @ Aua(2)).

But App(z) = G*(1 @ 2)W 77> and bringing G to the other side, G(1 ®
Ty (2))G* can be written as LU(1 ® J5i Ry (2)* Jg;)U*E by the remarks
in the proof of Lemma 6.4.10. Taking a scalar product in the first factor, it
is then sufficient to prove that for w € (]\//.7 )4, we have

2w ® (Wi A (2) = (®@w)(UQ® Jy Ry (2)J7) U Ara ().
But now using again that (7, ®¢)(Vas) = U, it is sufficient to show that
(L@w)(VM(1® JR17/(2)J57)Var) € A

Pt

and that applying A to it gives (w®¢)(Wg;)A g (2). We could check this
directly, but we can just as easily backtrack our arguments: we only have
to see if for y € A, o+ we have

Yw® ) (Wip)Azp(2) = (@w) (Vi (1 ® J5 Ry (2) J5) Var ) Ay (w)
for any z € A e This is then seen to be the same as saying that
(A7 @A) (A ) (m®1)) = WE(Agp(m) @ Agz(y),

which is of course true by definition.
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Lemma 7.3.5. Let x be in Ny, N AN, and a € T,

o on» the Tomita algebra
for oar. Then

(Wan (@*) Aar (oM (ayr) @ D(G) = (Wi (@) Ay () ® (GY).
Proof. Choose w € N,. Then

W((Wp ) An(eM @) OG) = ou(a] (a)((w® ) (an(@)")))
= ou((w®)(an(x)*))a)
= (Am(a), Au(([@®)an(z)))
= (Ay(a), L @®)(G)AN(z))
= W((WA (@) An(x) ®L(GY))

O

Proposition 7.3.6. Let (N, ay) be a right Galois object for a von Neumann
algebraic quantum group M. If x € N n Jl{o@ and y € O N JI{DQ, then

As)(x®1) in P(A; ®Apy), and

A7 ® A (AW (z®1)) = (Ju @ J)G(In ® Jp)(Ag(2) ®Ap(y))-
Remark: Compare this formula with the identity (J®&Ja) W (J53®Im) =

Proof. 1t is sufficient to prove that for y in @21 N ,/1{% and w € @*, we have
(@ ®)(Aai(y) € Ay, and
Ao (@ @)A1 (1)) = (@ @ )((Ju @ T)C (I @ Jp) A ().
Indeed: supposing this holds, choose z € 4, . Then
Q

~

(W@ )(BaW)Ay, (2) = 75 (2)(w @ )(Ju ® TR)G(IN ® J5))Ag, (y).

Choosing z € JI{OQ AN , this implies

Aot (1) (Apy (1) @ Ay (2))
= (175 (In ® Jg)G(IN ® J5)(Apq (1) ® Ay (1)
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Choosing also w € 4, and multiplying the previous expression to the left
@

with ﬂ@,(w), we obtain

Ai(y)(x® DAy (w) @ Ay (2))
(7 (0) @ 73, () (T ® TR)G(JIn ® J5) (Mg () ® Ay (1).

Since Ji{prQ @Ji{pré is a core for Aso’é®<p’©v we obtain Ag; (y)(z ®1) € </1{p©®<p@
and

(A22 ® Ao1) (Aan(y) (2 ®1)) = (Jur @ Jg)G(In © Jp)(Ar2(a) ® Ao (1))

by Proposition 5.3.6.

Now the identity
A ((w® (A (1) = (w @ )(Ju ® J3)G(JIn ® J5)) Ao (y)
is equivalent with
Joha((w ® ) (Aa1 () = @I ()" In) @ N(G) Jghan(y).  (72)

We will first prove this identity for special elements y and w.

Let y € @21 N ,/1{0@ be in the Tomita algebra of ©5 Let w be of the form
WAy (2),Anr(a) With @, a in the Tomita algebra of respectively oy and ppr.
Then by the first formula of Lemma 7.2.15 (used both in the general case
and the case where N = M), we have that (w ® ¢)(Ag1(y)) will also be

analytic for atQ , with

~

U?i/g((wAN(z),AM(a) ®1)(A21(y))

equal to

~

(WV}\?AN(:U%V;[UQAM(&) ® L) (A21 (ch)i/2 (y))) ’

For this, we only have to observe that
2= Wy Ay (2), V5 Ay (a) @ D) (D21(02 (1))

is an analytic function for any @ € @* Further,

@®1)(An()* = @ )(Any),
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which will be in @([A\lg) by Proposition 7.3.4, with

~ ~ ~ ~

Ap((@® ) (A12(y")) = (@@ )(GT)Ar2(y").
This shows that (w ® ¢)(Ag1(y)) € Z(Aay).
Now by Proposition 7.3.4 and Lemma 7.3.5, we have then also

Ra(@ @ 0)(A12(y"))) = Wy s)am (e @r) @ DO Ai(y),

and by Lemma 7.2.15, we have that (wy %) 4, (oM (a%)) ® ) (G) is analytic
for N = Ad(V%), with

XN (@ g ) Anr (0 (@59) @ (G)) = (Wi A (@) TasAps (@) @ ) (G).-

Now if w € B(Z?(N)) is analytic for xJ¥, this means means that vnggz

is bounded for any z € C, its closure being precisely x(w). So combining
all this, we get

Jpha1((w® 1)(An ()
- Vgﬂf\lg((w ®1)(A21(y))*)
= (V2 @ryryanort@ @OV )V Ria ()
Ao (y)
(y)-

®
= (WinAn(@)arAnr(a) @ (@)
(@(Jn () *In) ® ) (G)J5An

Now by closedness of A@, this equality remains true for w arbitrary. Since

such y’s form a o-strong-norm core for /A\gl, the equality is true for any
y € Q21 0 A 5"
O

Theorem 7.3.7. Let (N,ay) be a right Galois object for a von Neumann
algebraic quantum group M. Let P = 0,(M)" be the coinvolutive Hopf-
von Neumann algebm introduced after Lemma 7.3.3. Then the unique nsf

weight ¢ 5 on p satisfying dwp = Vg s a left invariant nsf weight on P.

In particular, P is a von Neumcmn algebraic quantum group.
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Proof. The previous proposition, together with a small adaptation of Lemma
5.7.8 with regard to the inclusion N® 1y € N ® N and the operator valued
weight (txy ® ¢ ), shows that

(®@p)(Ap(Lele)) = pp(LeLe)

for £ right-bounded and in the domain of V%Q. From Lemma IX.3.9 of [84],
it follows that also (¢t ® p)(Ap(b)) = pp(b) for b e ///Jﬁ. Indeed: that
lemma implies that b can be approximated from below by elements of the
form ", LgiLg with & right-bounded, and since b is integrable, every &;
must be in Q(VJI\?/Q) (cf. Lemma IX.3.12.(i) in [84]). So we can conclude by
lower-semi-continuity that ¢z is an nsf left invariant weight. Then if Rp is
a coinvolution for P, ¥5 1= ¢p o RQ will be a right invariant nsf weight.

Hence P is a von Neumann algebraic quantum group.
O

Definition 7.3.8. If N is a right Galois object for a von Neumann algebraic
quantum group M, and (]3, Alg) the von Neumann algebraic quantum group
constructed from it in the foregoing manner, then we call P the reflected
von Neumann algebraic quantum group (or just the reflection) of M across
N. We call the dual P of P the reflected von Neumann algebraic quantum
group of M across N.

7.4 Linking structures

7.4.1 Linking quantum groupoids

The following definition introduces a notion of W*-Morita equivalence which
takes a comultiplication structure into account.

Definition 7.4.1. A linking weak Hopf-von Neumann algebra two Hopf-
von Neumann algebms M and P consists of a linking von Neumann alge-
bra (Q, e) between M and P together with a coassociative normal faithful

*-homomorphism A Q Q@Q, whose restriction to P and M coincides
with respectively A p and Ag;. If there exists a linking von Neumann alge-

braic quantum gmupoid between two Hopf-von Neumann algebras M and 13,

2We write them as ‘duals’ to have compatibility with the previous sections later on.
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then we call M and P comonoidally W*-Morita equivalent.

When M and P are in fact von Neumann algebraic quantum groups, we also
call a linking weak Hopf-von Neumann algebra between M and Pa linking
von Neumann algebraic quantum groupoid between M and P.

Remark: Note that we do not assume that As is unital! In fact: by the
statement that A@ should restrict to Ap and A, we get that

A@(e) =e®e
as well as
A@(l@ —e) = (1@ —e)® (1@ —e),
A@(l@) = (6@6) + (1@ — 6) ® (1@ — e),

which is not the unit in @ ® @

In the following, we will use the notation as for linking von Neumann alge-
bras, but we put an extra ~ on the symbols, and we drop the extra index Q
at places.

We refer for example to the discussion concerning linking weak Hopf alge-
bras in subsection 1.2.3 for the intuitive reason for calling this a quantum
groupoid.

Just as we can give an abstract notion of a linking algebra without making
a reference as to what it is a linking algebra between, one can define the
notion of a linking quantum groupoid.

Definition 7.4.2. A linking weak Hopf-von Neumann algebra consists of a
triple (Q, e, AQ) for which (Q, e) is a linking von Neumann algebra, and A@
is a (non-unital) normal coassociative faithful *-homomorphism Q- Q®eQ
satisfying A@(e) =e®e and AQ(IQ —e) = (1@ —e)® (1@ —e).

A linking von Neumann algebraic quantum groupoid is a linking weak Hopf-
von Neumann algebra whose diagonal corners become von Neumann alge-
braic quantum groups by restricting the coproduct.
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As in the case of von Neumann algebraic quantum groups, we will always
suppose that a linking von Neumann algebraic quantum groupoid comes
equipped with fized left invariant nsf weights ¢ 7 and 5 on its corners.

It is clear that a linking von Neumann algebraic quantum groupoid is a
linking von Neumann algebraic quantum groupoid between its diagonal cor-
ners. But in fact, we do not even have to assume a priori that the underlying
couple (Q, e) is a linking von Neumann algebra.

Proposition 7.4.3. Suppose that in the previous definition for a linking
von Neumann algebraic quantum groupoid, we replace (@, e) by an arbitrary
couple consisting of a von Neumann algebra @ and a self-adjoint projection
e € @ which does not lie in the center of @ Then (@,e) s a linking von
Neumann algebra.

Proof. We have to show that ez := e and e; := (1 — e) are full. Denote
again @ij = ei@ej. Then for ¢ # j, the o-weak closure of @ji@ij in @jj is
a two-sided ideal, so it must be of the form p@jj for some projection p in
the center of @jj. Since Ajj(@ji@ij) - (@ﬂ@,] ® @ji@ij), we must have
Ajj(p) < (1 ®p). Then p must be either 1 or 0 by Lemma 6.4 of [56]. But
@ij is non-zero, by the non-centrality of e. Hence p = 1, and the fullness of
e and 1 o ¢ follows. O

Remark: The previous proposition easily implies that von Neumann alge-
braic quantum groupoids correspond exactly to those measured quantum
groupoids for which the basis is C?, and for which the source and target
maps coincide and have their image outside the center of the underlying
von Neumann algebra. This correspondence will be proven in more detail
in Example 11.1.9.

00 .
,( 0 15 ) ,AQ) which
we constructed from a right Galois object, will be a linking von Neumann
algebraic quantum groupoid. We will show later on that any linking von
Neumann algebraic quantum groupoid arises in this way.

In any case, it is easy to see that the triple (@

Now fiz a linking von Neumann algebraic quantum groupoid (@, e) between
two von Neumann algebraic quantum groups M and P. We will denote

e1 = (15 —e) and ez = e. Moreover, we will also write f1 = f(e1) and

fo = 0@(62). Finally, since the corners M and P are now in a symmetric
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position with respect to each other, we will rather suppress the notation 76

for the standard left representation, and explicitly use the notations 7! and
72 for the restrictions to the two columns of £2(Q).

By the general theory in the first section of the final chapter, we can define
a partial isometry

WE:2AQ) ©L%Q) - L) e L7(D),

uniquely determined by
WE Ry () © Ay (1) = (Agy ® Mg ) (A1) (z @ 1)),
Its source projection will be the projection onto the direct sum of the parts
L%(Qry) @ L%(Qir) of Z*(Q) ® L*(Q), with 4, j, k ranging over 1 and 2,
and its range projection will be the projection onto the direct sum of the
parts £%(Qij) ® £L%(Qir). In fact, W5 splits into unitaries
(W)" : £2(Qry) © L2(Qu) > £%(Qi) © L2(Quy),

determined by the same formula as for W5

7.4.2 Co-linking quantum groupoids

We now define abstractly the duals of linking quantum groupoids.

Definition 7.4.4. A co-linking von Neumann algebraic quantum groupoid
consists of a von Neumann algebra @, four non-zero central self-adjoint pro-
jections pi; € Q and a (non-unital) normal coassociative *-homomorphism
Ag : Q = Q®Q, such that Ag(pij) = Zi=1pik ® prj, and such that,
denoting Q;; = pij - @ and

AY Qi = Qi ® Quj : 7 — (pik @ piy) Ag (),
there exist nsf weights wg and ng on Qi; such that
(10 ® 9 (Al (i) = 0 (i) - 1qu,

for all x;; € ///‘:Q_ and
ij

(W3 ®1,,) (AL (247) = v (ayy) - 1q,,
for all x;; € '///JQ'

ij
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Note that in terms of the parts Afj, the coassociativity condition reads
l k k l
(Agr, ® 1@y, ) A% (i5) = (1qu @ ALj)Aj(wij)
for z € Q1 and 4,75, k,l € {1,2}.

This definition can again be given more succinctly using the language of
measured quantum groupoids: co-linking von Neumann algebraic quantum
groupoids correspond exactly to those measured quantum groupoids on base
space C? whose target and source maps do end up in the center of the under-
lying von Neumann algebra, and such that moreover their ranges generate
a copy of the algebra C*. We again make this correspondence exact in Ex-
ample 11.1.9. We also show there that there is a one-to-one correspondence
between linking von Neumann algebraic quantum groupoids and co-linking
von Neumann algebraic quantum groupoids, using the ‘duality functor’ be-
tween measured quantum groupoids.

If @ is a linking von Neumann algebraic quantum groupoid, we will also
write Q11 = P,Qo1 = O,Q12 = N and Qo = M. We further person-
alize the Afj: we write Al = Ap, AL, = vy, AL} = ap,Al, = 8p and
A3y = Ay, ALy = an, A% = 70, AL, = By We then also index the weights
in the definition by letters instead of numbers when more convenient. We
also denote pg = (—B%gom which is now just a direct sum of weights. Note
that we can canonically identify £?(Q;;) with mg(e;;)-£2(Q), and we will
of course do so in the following. Also note that M and P are then von
Neumann algebraic quantum groups, with w92 = @, resp. 11 = @p as left
invariant nsf weights, so that there is no conflict of notation. It is further
easily observed that ayv is a right coaction of M on N, using the (piecewise)
coassociativity of Ag (and similarly for the maps ap, vy and 70). The maps
Gy and Bp will be called the external comultiplications.

Just as for linking von Neumann algebraic quantum groupoids, it is easy to
show that there is a unique map

W : 2%(Q)®.2%(Q) —» £%(Q) ®-2%(Q)

such that for z,y € Ay, we have

W (Bpo (2) © A (1) = (Mg ® Apy)(Aq(y)(z @ 1)),

the right hand side being well-defined. Also, this W again splits up into
parts

Wi« Z2(Qi) ® L%(Qij) = L2(Qux) ® L%(Qiy),
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with each I/szk an isometry, and by measured quantum groupoid theory, a

unitary. In fact, denoting (@,e) the dual linking von Neumann algebraic
quantum groupoid, we have that

_ %

and

Now we can also write

where N R
Wik = Wa(1 @ eifi) € Qri ® Qik

for i,k € {1,2} (with the notation as on page 244). If we then denote by m;y,
the natural *-representation of Q on .Z2(Q;), we have the following trivial
but important lemma:

Lemma 7.4.5. For all i,k,j, we have Wfk = (%iz @ i) (Wigs).

In the following, we will drop the symbol 7;;, when we restrict it to Q.

Proposition 7.4.6. Let QQ be a co-linking von Neumann algebraic quantum
groupoid. Then (N,ay) is a right Galois object for M.

Proof. We must show that o is integrable and ergodic, and that its Galois
isometry G is a unitary.

By one of the invariance formulas in the definition of a co-linking von Neu-
mann algebraic quantum groupoid, we have that

(L®eman(z) =en(T) 1N

for x € ///JN. Clearly this implies that ay is integrable, since ¢y is semi-
finite. Now

(t@pm)an(z) = en(z) - 1n
even holds for x € N™: this is a consequence of the strong form of left in-

variance for measured quantum groupoids (see Lemma 11.1.8). This then
implies that ay is ergodic: if we denote again T,,,, = (¢ ® par)an, then the
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linear span of Ty, (///ﬂN) is o-weakly dense in N“~. But //l;aN = M,
by the above equality, hence N*¥ = C-15. (We could also have avoided the
use of this strong invariance formula, using instead a ‘Heisenberg algebra’
type of argument as in Proposition 7.2.17.)

Finally, consider the Galois isometry
G: 2*(N)® L*(N) » L1 M)® L*(N).

Then it is easily seen to coincide with the unitary map % (W3,)*¥. Hence
(N, ay) is a right Galois object for M.
[

This means that if M and P are von Neumann algebraic quantum groups,
and Q is a linking von Neumann algebraic quantum groupoid between M
and P we have a canonical way to construct a right Galois object N for
M from it, and we will write N = GaIT(@). Conversely, by the results of
the previous section, if we have a right Galois object for M, then we can
construct from it in a canonical way a linking von Neumann algebraic quan-
tum groupoid, which we W111 write for the moment with an extra”, i.e. as
Q, and we will also write Q = LQG(N). Following cA:arefully the iterate of
these constructions, one can conclude that in fact Q = LQG(Gal (Q)) is

a linking von Neumann algebraic quantum groupoid between M = 7r22(1\/4\ )
and 7711(P), using identity maps. Then by identifying P with 72 (P A) via
72, we get that Q is a linking von Neumann algebraic quantum groupoid
between M and P. Then 7@2 is an isomorphism between the linking von

Neumann algebraic quantum groupoids @ and Q between M and P.

Conversely, it is easy to see that if N is a right M-Galois object, then
N = Gal,.(LQG(N)) as right M-Galois objects. Hence:

Corollary 7.4.7. There is a natural one-to-one correspondence between
right Galois objects and linking von Neumann algebraic quantum groupoids.

We have to warn however, that this correspondence does not pass to iso-
morphism classes (for the issue of isomorphism questions, see for example
the remarks made in section 1.1.2). We will return to this issue in the next
subsection.
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7.4.3 Bi-Galois objects

Definition 7.4.8. Let M and P be von Neumann algebraic quantum groups.
A P-M-bi-Galois object (or bi-Galois object between M and P) consists of
a triple (N,yn,an) such that (N,an) (resp. (N,vn)) is a right (resp. left)
Galois object for M (resp. P), and such that an and yn commute. We
call M and P monoidally W*-co-Morita equivalent if there exists a P-M -
bi-Galois object.

Proposition 7.4.9. Let QQ be a co-linking von Neumann algebraic quantum
groupoid. Then (N,vn,an) is a P-M-bi-Galois object and (O,~v0,a0) an
M -P-bi-Galois object.

Proof. The four coactions which appear all induce left or right Galois object
structures, by Proposition 7.4.6 and symmetry arguments. So we only have
to see if vy and ay commute. But this is immediate from the (piecewise)
coassociativity of Ag. O

We prove a proposition concerning the reconstruction of a bi-Galois object
from its associated right Galois object.

Proposition 7.4.10. Let (N,3y,an) be a P-M-bi-Galois object for von

Neumann algebraic quantum groups M and P. Denote by P the reflection
of M along N, and by (N,vn,an) the associated bi-Galois object. Then the

canonical normal left representation of P on L2(N) provides an isomor-

phism d: P> P of von Neumann algebraic quantum groups, such that,
denoting by ® the dual isomorphism between P and P,

AN = (P ® tn)YN-

Proof. Let o = (1§ ® par)an. Choose a state w € N,. Then for x € //ZJN
and a non-zero w' € P, we have that

W @w® ) ((t ® an)In(z)))

(( )((
(W' @w® ) (AN ® tar)an()))
z)(W ®@w)(Fn(1n))

on((W ®n)AN(T) = oum
M

By the uniqueness of an invariant nsf weight for a left Galois object, we con-
clude that ¢y coincides with the invariant nsf weight as constructed from
(N,4n) (up to a scalar). Similarly for ¢y, which we define as (15 ® tn) N,
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and for which we then show that it is a-invariant.

Now let ﬁp be the Galois unitary for (N,4x), and Hp the one for (P,vyy).
Then Hpﬁ; is a unitary in B(Z2(P), £2(P)) @ N by Lemma 6.4.10. We
prove now that H p satisfies a pentagonal identity with respect to U, the
unitary implementation of «ay, namely

(H )12U13U23 = Ua3(Hp)12.

Indeed, this is an easy verification, using the fact that 45 commutes with
an: for x,y € Ay, and m in (for example) .4;,,, we have

((Hp)12U13U23)(Tn () @ Tv () @ T (m)
Ty @T'N @Ta) (v ® tar)(an(z)) - (1p ®an(y))(1p ® 1n @ m))

) .
(TN @®IN@TM)((tp @an)(n(z)) - (1p®@an(y))(1p ® 1n ®m))

Uzs(Hp)12(In(z) @ v (y) @ i (m)),

which is a rather careless calculation, easy to make more rigorous.

Since the same pentagonal identity holds for Hp, we have that
(HpH?%)12Uss = Uss(HpH )12,
which implies that ﬁpﬁl;g € B(L2(P), £*(P))® (N A P). But (N n P) =

(N’ U P')", which equals the whole of B(.#2(N)). Hence FIPFI]’_E, =v®1 for
some unitary v : ZL2(P) — Z%(P).

Now since Hp = (v® 1)Hp, the second item of Lemma 7.2.6 implies that,

denoting O’ the space of left P-intertwiners Z%(N) — .Z?(P), and similarly
by O’ the space of left P-intertwiners .Z2(N) — £?(P),

O -0 :zx—-uvx
is an isomorphism. Then clearly
&P — P :x—vxv*

is also an isomorphism.
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We show now that P preserves the comultiplication. By the pentagonal
identity for H, we have

(Vp)i2(Hp)1s(Hp)as = (Hp)as(Hp)1a.

Using the similar identity for Hp and the fact that Hp = (v ® 1)ﬁlg, we
conclude that

(v@V)Va(v* @v*) = Vp,

which immediately implies that P preserves the comultiplication.

Now we show that the inverse of the dual ® : P — P of &)' uniquely
determined by the identity ((ID’ ®®1)(Vp) = Vp, intertwines y and vy in
the manner indicated in the proposition. But clearly, ® = Ad(v*). So

® (@' ®@w)IN)Hp) = (15 @27 @) ((Vp)iz(Hph

3)
®1®1)(Vp)i2(v®1®1)(Hp)1s

o (
(v*

= (V*®1®1)(Ve)i2(Hp)1s
(v* TN
(

v*@1®@1)(15 @) (Hp)
7y @) (Hp).

Since the second leg of H p 1s o-weakly dense inside N, the intertwining
property follows.

O

Hence any bi-Galois object can be recuperated from its associated right Ga-
lois object, and in particular, two von Neumann algebraic quantum groups
are monoidally W*-co-Morita equivalent iff their duals are comonoidally
W*-Morita equivalent. Observe however that again, the isomorphism class
of a bi-Galois object is not determined by the isomorphism class of the asso-
ciated right Galois object. In fact, we have the following proposition, which
is a straightforward analogue of a result of [71].

Proposition 7.4.11. Let M and P be von Neumann algebraic quantum
groups, let (N,an) be a right M-Galois object, and let (N,vyn,an) and
(N, 9N, an) be two P-M-bi-Galois objects. Then there exists an automor-
phism ®p of the von Neumann algebraic quantum group P such that (®p ®
YN = ANn. Moreover, the two bi-Galois objects will be isomorphic iff there
exists a group-like unitary u € P such that <I>p = Ad(u).
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Proof. The first statement follows immediately from the previous proposi-
tion.

Now suppose that (N,vn,an) is a P-M-bi-Galois object, where we can
suppose that P is the reflection of M across N. Suppose that ®p is an
automorphism of the von Neumann algebraic quantum group P, such that
(N,yn,an) and (N, (®p ® ty)yN,an) are isomorphic, that is, that there
exists an isomorphism ®5 : N — N of von Neumann algebras, such that

(PN ®t)oany = an o Py,

(Pp @ PN)oyN = YN o Py.

Then it follows by the first commutation that ox o ®ny = @n. Define a
unitary

u: LAN) - L2N) : Apy (2) = Apy (PN (), TE Ny
Then an easy calculation, using again the first commutation, shows that
Ty ((L@W)(Var))u = ug, ((@w)(Vi)),  we M.

Hence u € éaN (]/\/[\)’ But é\QN (M\)’ — P. Moreover, if G is the Galois unitary
for ajy, then an easy calculation shows that

Gu®u) = (1®u)G,
so that, since Ap(z) = G*(1® z)G by definition,
Ap(u) =u®u,
i.e. u is a group-like element of (P, Ap).

We now show that «* implements d p, the dual of ®p. This is again easy:

if Up is the unitary implementation of vy, and w € Py, x € A4, then

(W) (Up)uhn() = An((w® )N (Pn(2)))
= An(On((wo ®p ® )y ()
= u(w 0] (DP ® L)(UP)AN(x)v

which implies (Pp ® Ad(u))(Wp) = W5, and so dp = Ad(u*). So ®p is
necessarily a co-inner automorphism (in the sense that its dual is inner by
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a group-like element).

Conversely, it is not difficult to see that if ®p is co-inner by a group-like
element u* € P (so ®p(x) = u*zu for x € P), then

N - N :z — uzu®

will be a well-defined isomorphism from (N, vy, an) to (N, (®Pp®i)yN, an).

First of all, if x € N, then uzu® will end up in N by the biduality theorem:

if 4y is the dual right coaction of vy on B(Z?(N)) = P x N, then for
N

reN,

IN(uzu®) = Ap(u)(z®@1)Ap(u”)
(u®u)(z®1)(u* ®u*)
= (uzu*®1).

But then uzu® € (P x N), which is exactly N.
W

Since u commutes elementwise with 8, N (]T/[\ ), we will have
(u@HU =U(u®1l),
where U is the unitary implementation of a, hence
(PN ®1)oany = ay o Py.

And since u*zu = ®p(z) for z € P, we will have (1 @ u*)Up = (Pp ®
)(Up)(1 ® u*), where Up is the unitary implementation of vy, and hence

(@P@@N)OVN :WNO‘I)N

O

From the previous proof, it is also easily seen that, in the notation of the
previous proposition, the set of isomorphisms from (N, vy, ayn) to (N, (Pp®
LN)YN,an) is parametrized by the set

{ue p | u grouplike and implementing d P}

Indeed: one further only has to observe that PAN =C.
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7.4.4 Further structure of (co-)linking quantum groupoids

In reconstructing a linking von Neumann algebraic quantum groupoid (CA), e)
from a right M-Galois object N, we introduced some auxiliary structures,
such as dy, Py,... On the other hand, a von Neumann algebraic (co-)linking
quantum groupoid, which is a measured quantum groupoid, comes with
some structure of its own, such as a scaling group, a modular element, a
scaling operator, ... We show here that both these structures are the same.

So let (@, e) be a linking von Neumann algebraic quantum groupoid and @
the associated co-linking von Neumann algebraic quantum groupoid. Let
N be the associated right M-Galois object, with Galois unitary G, using
notation as before.

First, we give some more information about the unitaries szk pertaining to
the linking quantum groupoid. By construction, we have that

Wi =Wz,  Wh=0G.
By Proposition 7.3.6, we also have that
W3 = (Jn ® Jg)G*(Ju ® J).
We have the further identity
Wiy = (Jg ® J)U(Jp ® J57),

where U is the unitary implementation of apy. For this, use for example
that
1
Tgp(m) = Jg7

NaN

(Jgm*J)* I

when m € ]/\4\, and that

(Jr ®J7)U(J5 ® Ji;)

= (Jﬁ@JM\)( aN@L)( )(J ® J5; )

= (Jg®J5)(Fay ®@N(J5 @I We(J5® ) (Js ® J7)
= (T ®)(Wy).

Then the stated equality follows from Lemma 7.4.5. This gives us descrip-

tions for four of the maps WZ]; (and three of the maps WZ]) constituting W

in terms of the associated right Galois object (N, an). The other four can
then be described in terms of the Galois map, unitary corepresentation and
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multiplicative unitary of the associated left Galois object (N,vy). Copies
of these four maps however can also be obtained directly by using only the
right Galois object. We will make this clear later on for the multiplicative
unitary of P (see Proposition 7.4.18).

The modular operator V. for 5 is easy to describe, since it is just the
modular operator for a bzﬁanced weight, whose structure we have already
described. So
it _ it it it it
V(’D@ = V% ® Vé ®Vy @V%Q,

and V, is the modular operator for ¢z, while V5 is the spatial derivative
of @5 with respect to ¢'~. The fact that Vg coincides with the map V3
constructed from the rigfl/{c Galois object is obvious, by construction. Hence

the modular one-parametergroup of Q

oD (i )

t

can be written in the well-known form

The modular operator V4, for ¢ splits up into a direct sum:
it _ it it it it
VZOQ o vpr ® vfﬂo ® vpr ® vpr‘

This is obvious, as the weight g is a direct sum of weights, and then
Ve is just the modular operator for the Jp/-invariant nsf weight ¢y of
the associated right Galois object. The corresponding form of the modular
one-parametergroup is then easily derived.

The modular element 65 of (@7 e) will be of the form

55 0
P P
° (0 5]@)’

with 05 and 077 the modular elements for resp. P and M. Again, this is
easy, since 6@ is uniquely characterized by the identity ¢5 = ¢g (532 . 532),

where LZ)Q and pg are just the balanced weights of 5 and 9z, resp. ¢p
and 7.

The modular element g of Q) can be written as

(5Q 2513@(50@5N@6M7
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with dp the modular element of P and d;; the one for M (with respect to the
fixed left and right invariant nsf weights on M and P by restricting the ones
on Q). Then oy will coincide with the modular element for N introduced
in Definition 7.2.10, possibly up to a positive scalar. This follows from the
fact that there is a unique ay-invariant nsf weight on N, up to a positive
scalar, and the fact that, once a right an-invariant nsf weight on N is fized
(such as 1Y), then dn is uniquely determined by the property that Vﬁ/ 25%
is the cocycle derivative of ¥ w.r.t. ¢n. Note that, in the construction
of a linking von Neumann algebraic quantum groupoid from a right Galois
object, different scalings of o5 will correspond to different scalings of the
left invariant weight ¢ 5 on P. In particular, there seems to be no canonical

choice of invariant weight on P in terms of the right Galois object (N, apn).

By using that the scaling group o of (@,e) is implemented by VfﬁQ (see
theorem 3.10.(vii) of [30]), we find that it is of the form

(5 - (50 ).

where 77 and 7™ are the scaling groups of resp. P and M , and where T,

N

and TtO are certain one-parameter transformation groups of resp. N and O.

On the other hand, by using that the scaling group TtQ of @ is implemented
by Vgé, we find that

7= o’ o o,
where 7 and 7 are the scaling groups of respectively M and P, and
where 77V is the scaling group on N, as introduced in Definition 7.2.2. Since

Vg = JK,V%JG, we also find that 70 (x) = JﬁTgV(J@xJﬁ)JO for z € O.

The unitary antipode R@ of (@, e) will be implemented by Jg, which is just
the direct sum Jp @ Jo ® Jy @ Jpsr. Therefore,

(i )-8 28),

M

where Rp and Rg; are the unitary antipodes of resp. P and M , and where

Rg(y) for example equals Jyy* Jy.
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Since the unitary antipode Rg of () is implemented by
Jg @XQ(QU) - @32(@3‘) :
ij ij

(€ & &2 &) - (Jpén Jge Jpbar Jyéee ),
we also have that
Rz @®z@y®w) = Rp(x) ® Ry (y) ® Ro(z) ® Ru(w),
where z € P,z € O,y € N,w € M, where Rp and R); are the unitary an-

tipodes of respectively P and M, and where for example Ry (y) = J N 5

Finally, note that by Lemma 7.2.11, we have that o7~ (6%) = v45/0%, while,
since ¥ plays the role of ¢y for the right PP-Galois object (N,vy), we
also have szN (05%) = vist, 5. Since of ¥ (8%) = of N (6%), we conclude
that vpcop = VMI, and then vp = v);. Hence:

Corollary 7.4.12. If M and P are monoidally W*-co-Morita equivalent
von Neumann algebraic quantum groups, then they have the same scaling
constant.

It is then clear that the scaling operators of the measured quantum groupoids
@ and @ (see Theorem 3.8.vi) of [30]) are scalar multiples of the unit.
7.4.5 Multiplicative unitaries

We again fix a linking von Neumann algebraic quantum groupoid @

Let Wg = EWQ’fZ be the left regular multiplicative partial isometry asso-

ciated with its dual co-linking von Neumann algebraic quantum groupoid.
We have the following formulas, which are immediate consequences of the
pentagonal identity for Wg:

Lemma 7.4.13. 1. For alli,j,k,1€ {1,2}, we have
(W) 12(W)13(Whi)as = (Wh)23(W))1a
as operators
2%(Qi) ® 2*(Qjr) © L2(Qu) — 2%(Qij) @ L*(Qun) ® L*(Qu)-

2. For alli,j, k€ {1,2} and x € Q;j, we have Afj(a:) = (Wfk)*(l@)m)Wfk
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3. For all i, j, k1€ {1,2}, we have (A, ® 0)(W},) = (W})1s(Wl)as.

Of course, we can also consider a right multiplicative partial isometry V.
This will split up into unitaries

Vi L2(Qij) ® L2(Qij) = L2(Qik) ® L2(Quj),
and then

Lemma 7.4.14. 1. For all i,j,k,1 € {1,2}, we have
(Vi12(ViDis(Vih)as = (Vi))as (Vi1
as operators
L2(Qu) ® L3(Qj1) ® L2(Qu) = L(Qi) © L2(Qji) ® L% (Qnr)-
2. For all i, j,k € {1,2} and x € Qij, we have Af;(x) = Vi (x @ 1)(Vi)*.
3. For all i, j, k,1 € {1,2}, we have (@ A%) (V) = (Vi )i2(Vips.

We now introduce the notion of a quantum torsor (which really only depends
upon the isomorphism class of the von Neumann algebraic (co-)linking quan-
tum groupoid, but which can then of course also be associated naturally to
any right Galois object).

Definition 7.4.15. If Q is a co-linking von Neumann algebraic quantum
groupoid, then the associated quantum torsor is the couple (N, ©), where ©
s the map

O:N->NROQN :x— (tn®Bu)an(z) = (Bp @ ty)yn(T).

Note that in the previous definition, we should identify O with N (or N°P,
or N’) by sending x to Rg(x)* (or (Rg(x))°P, or Cn(Rg(z))), as to make
the notion of quantum torsor involve only one von Neumann algebra. But
since we will not define a (von Neumann algebraic) quantum torsor inde-

pendently, we will just keep using the O-notation.

In the following lemma, we construct a multiplicative unitary for this quan-
tum torsor.
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Lemma 7.4.16. For all v,z € N, andy € N, we have O(2)(xQy®1) €
Non®po®pn» and

(AN®Ao®AN)(O(2)(x®@y®1)) = (W31)33(Wih)Ts(An (2)@Ao (y) ®AN(2)).
Proof. This follows immediately by the definition of W,:

(W31)35(Wia) 15 (Apys (2) ® Mgy, (1) ® Ay, (2))
(W221)*(As012 ® A<P21 ® A<,022)((A%2(z))13(x QY 1))
= (A, @ Npyy @A) ((L® A%2)A%2)(z)($ Ry®1))
= AN®@Ao®AN)(O(R)(z®y1)).

We define W := (W2)13(W3)23. It satisfies a pentagon identity:
Proposition 7.4.17. Let (N,O) be a quantum torsor. Then the following
commutation relation holds:

(W) 123(W®)125(W)3a5 = (W)345(W)123.
Proof. Taking the adjoints of these expressions, the equality easily follows

by the formula of the previous lemma. O

We can use W€ to provide a different multiplicative unitary for P. Denote

H = LX(N)® ZL2(0).

Proposition 7.4.18. We have that W© = (6p ® 72,)(Wp), and Wp :=
(VVe ® 1), seen as an operator on F ® I, is a multiplicative unitary for
the von Neumann algebraic quantum group P.

Proof. Tt follows from Lemma 7.4.5 that (:®7%,)(Wp) = W3. From Lemma
7.4.13 it follows that
Br@)WH) = (Wiis(Wi)as
= W°.
By the pentagon equation for W, it follows easily that Wp is a multiplica-
tive unitary. Then also

(W 1234((Bp @ 711) (Wp))345Wp1231) ® 1

= Wp193aWra1s6Wp1234

- I/T/vP 1256WP 3456

= (((Bp®7T)(Wr)125((Br ®7T1)(Wp))315) ® 1
= (Br®Br@T)((Wp)13(Wp)23) ®1

= (((Bpr®Bp)oAp)®71H)(Wp)®1,
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from which it follows that Wp is a multiplicative unitary for (8p(P), (Bp ®

Bp) o ApoBpt) = (P, Ap).
O

Since Wi, = ©G*Y, where G is the Galois unitary for the associated right
Galois object N, and, since we have already argued that W2 = €. 7y,
where G'; denotes the operator (Jys ® JN)G(JN ® Jp), this means that the
multiplicative unitary of the von Neumann algebraic quantum group P can
be constructed directly from the Galois unitary G and the modular con-
jugations Jy and Jys associated with the right Galois object N (since the
restrictions Jg and Jg of J@ are just formal constructions, see the remark
after the following proposition). In fact, we can use this to reconstruct the
von Neumann algebraic quantum group P from N in a direct manner (with-
out passing to the dual ]3), which is more in line with the method in Hopf
algebra theory (but of course, for us this is rather an a posteriori construc-
tion!).

Proposition 7.4.19. The von Neumann algebra
P={zeN®O|(1®10)(2) = (an ®1)(2)},

together with the comultiplication

Ap(r) = (O®1)(x), xeP,

will be a well-defined Hopf-von Neumann algebra, isomorphic to the von
Neumann algebraic quantum group P by the map Op.

Proof. Tt is not difficult to see that P is a well-defined coinvolutive Hopf-
von Neumann algebra, using the various coassociativity relations between
the A7, and the fact that (Rg @ Rg) o Ad(X) provides a coinvolution.

We show that it is an isomorphic copy of P. If z € P,, it is easily seen
that (1yy ®¢)(2) € (070)H¢ 50 since o is ergodic, ¥y ® ¢ restricted to P
yields an nsf weight 95 (it is semi-finite since P contains $p(P), on which
YN ® ¢ is semi-finite by right invariance of ¢y with respect to Sp). By
the formula for the comultiplication and the invariance property of ¥y, it
is also immediate that v 5 is a right invariant weight for P, hence P is a
von Neumann algebraic quantum group. Since the comultiplication A s can
be written as z — Wh(1 ® 2)Wp where Wp = WO ® 1 (using that W
implements ©), since {(t @ w)(A(P)) | w € Py} will be o-weakly dense in
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P, and since the first leg of Wp lives inside B(P), it is clear that (P, A p)is
just (Bp(P), (Bp ® Bp) o Ap o Bz1).

O]

Remark: Since Jg : Z*(N) — £?(0) is an anti-unitary going out of
£?(N), it contains no information. As already mentioned at some point,
this allows us to identify .#?(0) with the conjugate Hilbert space .£2(N),
and then Jg becomes the canonical anti-unitary conjugation map. This

identification precisely induces the identification of O with N = J N5,
the conjugate von Neumann algebra. It is also easy to see that ~o is then
just the left coaction

vo(x) = (R @ €~ 1) (ayy (€(2))),

where €' (z) = Jzz*Jg for x € N. This means that we can construct the von
Neumann algebra P rather quickly, just from the coaction ay. Of course, it
takes some more work to show that it has a well-behaved comultiplication
(for which we need the Galois unitary), and it would probably take the most
work to construct the invariant weights (which we have not tried to obtain
in this direct way).

7.5 Comonoidal W*-Morita equivalence

We show that ‘being co-monoidally W*-Morita-equivalent’ is an equivalence
relation. This follows from performing certain operations on linking von
Neumann algebraic quantum groupoids.

o~ e~

Reflexivity is clear: M ® M>(C) = ( % % ) has an obvious structure of

a linking von Neumann algebraic quantum groupoid between M and itself.
We call this the identity linking von Neumann algebraic quantum groupoid.
As for symmetry, note that if (@,e) is a linking von Neumann algebraic
quantum groupoid between M and ]3, then (@, 1@ — e) is a linking von

Neumann algebraic quantum groupoid between P and M. We call this the
imwverse linking von Neumann algebraic quantum groupoid.
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We now show transitivity. We do this by composing linking von Neu-
mann algebraic quantum groupoids (between), calling the resulting struc-
ture the composite linking von Neumann algebraic quantum groupoid. Sup-
pose @1 and @2 are linking von Neumann algebraic quantum groupoids
(between). Consider the associated 3x3 von Neumann linking algebra O =
. L2(Qr2) .
(Qij)ijef1,2,3}, represented on £2(Q22) |- Then Qi3 is the space of inter-
£2(Q32)

twiners between the right representations of @22 on ¥ 2(@32) and ¥ 2(@12).
This way we can define a map

Arg: Q13 > 013Q Q13 : & — (WEQ)*(I ®90)W3227

which will be well-defined (by a similar argument as in Lemma 7.3.1) and
coassociative. Then we can define

A31 : @31 - @31 ® @31 x> A13(510*)*,

and then Ay3(y)Asi(z) = An(yz) and Az (z)Ai3(y) = Asz(zy) for z €
Q31, Y E ng This provides us with a linking von Neumann algebraic quan-
tum groupoid between Qqq =~ QH = Q1 11 and Qi3 =~ Q33 = Qg 292, by which
it follows that Q11 and Q)33 are monoidally W*-co-Morita equivalent.

We now present these constructions on the dual level of bi-Galois objects.
First of all, if M is a von Neumann algebraic quantum group, (M, Ay, Apy)
is an M-M-bi-Galois object (which we then call the identity bi-Galois ob-
ject). Second, if N is an M-P-bi-Galois object, O will be a P-M-bi-Galois
object (which we call the inverse bi-Galois object).

To show the transitivity of the monoidal W*-co-Morita relation and its rela-
tion with the transitivity of the comonoidal W*-Morita equivalence relation,
we need a lemma.

Lemma 7.5.1. Let N be a right Galois object for a von Neumann algebraic
quantum group M, and let N € N be a unital normal inclusion of von
Neumann algebras. Suppose oy is an ergodic right coaction of M on N
which restricts to aoy on N. Then N = N.

Proof. 1t is clear that g will again be integrable. Since ¢ = (t @ our)ay
restricts to ony = (1 ® ppr)any on N1, there is a natural isometry v :
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ZL%(N) — Z2(N), sending Ay, (z) to Ay (z) for x € AL, Denote p = vv*.

Let é]\”/ be the Galois isometry for a 5. Then we know that (1®9N(z))é]\~, =
GN(l ® 05(z)) for z € N. Since éN(’U ®v) = (1 ®v)Gy, where Gy is
the Galois unitary for ay, we see that the range of G § contains the alge-
braic tensor product £2(M) ® (GN(N)v,iﬂ(N)). Since this last space has
L2(M) ® L*(N) as its closure, it follows that G & is unitary, hence ay
Galois.

Now

Ry (1®@we ) (Van) Ay (2) = Ay (1 @wjiz, (o ()

M
: 1/2 ~
for &,m € ZL*(M) with € € @(51\//[ ), and x € A,,. Hence W;N(m)v =

vy, (m) for m e M, from which it follows that p € %gﬁ(]/\/[\')’.

So if P is the reflected von Neumann algebraic quantum group of M across

N, it follows that p is a projection in P satisfying

éj{;(l ®vv*)éN
= (v ®v)(~}’}‘v(~;N(v ®v*)
= (p®p).

Then necessarily p = 1 by Lemma 6.4 of [56], so N = N.

()

O

Suppose now that (Q12, 712, @12) and (Q23, V23, aa3) are respectively Q11-Q22
and (Q92-Q33-bi-Galois objects for certain von Neumann algebraic quantum
groups @;;. Denote

Quz={reQ2®Q23 | (2@ )(x) = (t ®123)(x)},

and let aq3 be the restriction of (¢ ® ags) to @13, and 713 the restriction
of (112 ®¢) to Q13. Then (Q13, a13,713) will be a Q11-Q33-bi-Galois object,
which we will call the composite bi-Galois object. To see this, we show that
it is isomorphic to the bi-Galois object associated to the composition of their
associated linking von Neumann algebraic quantum groupoids.

For consider again the 3x3 linking von Neumann algebra Q associated to
their (dual) linking von Neumann algebras. Then it is easy to check that
((Qi5), (Aij)) has the structure of a measured quantum groupoid with base
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C3 in the obvious way. Then the dual of this ‘3 x 3-linking quantum groupoid’
can again be written as Q = (—Df =1 Q;j, with the dual comultiplication Ag
splitting up into maps

AZ‘ 1 Qi — (Qik @ Quj)-
The triple (Q13, A$;, Al;) will then be the Q11-Q33-bi-Galois object associ-
Qu Qi3
Q31 933

We show that this bi-Galois object is isomorphic with (@13, @13,713). We
have that Af, = y12, Ay = a1, Ajs = 723 and A3y = ags (identifying
(Qi, A7) with (Qix, Al,) when |i — k| < 2), and by coassociativity, it is
easily seen that A%, sends Qi3 into Q13. Moreover, for z € Q13, we have

a13(Aly(2)) = (A3 ® ) (Afs(2)),

ated with the linking von Neumann algebraic quantum groupoid (

and
mM3(Af3(2)) = (1@ Af)(A3(2)).

So to end the proof, we have to show that Q13 is exactly the image of Q13
under A%;. But aj3 is an ergodic coaction. Since (Q13,13) contains the
Galois object (A%3(ng),oz13), we must have Q13 = Afg(ng) by Lemma
7.5.1.

This provides us then with a canonical composition of two bi-Galois objects
of which the first has its right coacting von Neumann algebraic quantum
group equal to the left coacting one of the second. Since this composition
is easily seen to pass to isomorphism classes, we can make a (large) cate-
gory containing as objects all von Neumann algebraic quantum groups, and
with morphisms isomorphism classes of bi-Galois objects between the cor-
responding von Neumann algebraic quantum groups, for it is easily seen
that the composition will be associative, and that the isomorphism class of
(M, Apr, Apy) for a von Neumann algebraic quantum group M will provide
a unit morphism at M. In fact, this will be a (large) groupoid: Proposition
7.4.19 shows that both compositions of (N,vy,ayn) and (O,v0, ap) will be
isomorphic to the identity morphisms. We can interpret this large group-
oid as a big ‘2-cohomology groupoid’, jointly for all von Neumann algebraic
quantum groups together. We will treat a subgroupoid of it in the ninth
chapter (see in particular Proposition 9.1.5 as to why we use the terminology
of 2-cohomology).

).
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7.6 C(Cr-algebraic structures

For the rest of this subsection, let (N,vyn,an) be a fived P-M-bi-Galois ob-
ject between certain von Neumann algebraic quantum groups M and P. We
will apply to the associated linking von Neumann algebra (@, ) and its dual
Q@ the C*-algebraic constructions explained in the second and third sections
of Chapter 11.

Let A be the reduced C*-algebraic quantum group associated to M, and
D the one associated to P. Let A" be the universal C*-algebraic quantum
group associated to M, and D" the one associated to P. We use the obvi-
ous notation for the duals. We also use notation as before for the associated
structures.

Theorem 7.6.1. Let N be a P-M-bi-Galois object. Then the C*-algebras
A and C are C*-Morita equivalent.

Proof. Denote the weak Hopf C*-algebra associated to (@, e)
where e is interpreted in the obvious way as an element in M (
FE is the normclosure of the set

{( (L®W11)(V1711) (‘®w12)(V:Vlz) ) | wij € (Qij)x} € Q.

(E,e),

by
E). Then

(t®@wa1)(Wa1) (¢ @uwaz)(Waz)

Then E is a linking C*-algebra, once we have shown that BB* equals the
normclosure of {(w11 ® ¢)(W11) | w11 € (Q11)«}. (The density of B*Bin A
follows by symmetry.)

Choose w € B(Z?(N)), and ' € B(Z%(0))«, then (w®1)(W3) € %%Q(B),
(W' ®1)(W3) € 72,(B)*. By the pentagon identities in Lemma 7.4.13,

(W@ )W) (W ®)W5) = (WO ®)(Wix)is(Wi)s)
= (WOW ®)((Wip)T2(Wi)2s(Wip)12),

from which it follows that 7T11(BB*) is dense in 7711(13)
O

Let us now look at the reduced C*-algebra E pertaining to the co-linking
von Neumann algebraic quantum groupoid ). We denote by [ -] the norm-
closure of the linear span of a set.
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Proposition 7.6.2. Let N be a P-M-bi-Galois object.

1. The closure of
{(w®)(G) | we 04}

is a C*-algebra B.

2. The restrictions of the coactions any and vy to B are continuous in
the strong sense (cf. section 5 of [5]), and satisfy

lan(B)(B®1)] = B ® A,

min

[(1®B)w(B)] =D ® B.

min

Proof. For the first statement, note that F is the closure of

2
{(w@®)(Wp) |we Qu} =D (win ®)(Wi) | wix € B(L*(N) @.L%(M)).}.
,J
This means that FE spligs\ into a direct sum D@ C ® B@® A, where B is the
normclosure of {(w®:) (W) | w € B(ZL?(N)®L?*(M))+}, and C = JgBJ.
Since sz = @, the first result follows.

The second statement follows immediately from the fact that

[B(E)1® E)] = [Aq(E)E®1)] = Ag(1)(E ® E),
which was proven in Proposition 11.2.2.
O

Now we look at the preduals. Give M, and P, the *-Banach algebra struc-
ture by the usual predual norm, the product wy - we = (w1 ®ws) 0 A, and,
momentarily, with the *-operation determined by the unitary antipode (so
w*(z) = Ww(R(x))). In the following proposition, a topologically strict Pj-
M,-imprimitivity bimodule is taken in the sense of Definition XI.7.1 of [36]
(see also section 5 of [51]).

Proposition 7.6.3. Let N be a P-M-bi-Galois object. Then N, is a topo-
logically strict Py-M,-imprimitivity bimodule.
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Proof. We can also give (), a Banach *-algebra structure by the usual mul-
tiplication, and w — Wo Rq as the *-operation. Then it is clear that inside
this algebra, P, - N, - M, S N,, so that N, is at least a Py-M,-bimodule.
Now for wi,ws € Ny, define (wi,wa)y = wi - w2 and {wi,w2)p = wi - w3.
Then clearly (-, -)ps has range in M,, (-, -)p has range in Py, and these make
N, into a Py-M,-imprimitivity bimodule.

So we only have to see if this imprimivity bimodule is strict. Suppose m € M
is such that (w1, w2 )ypr(m) = 0 for all wy,ws € Ny. Then (w1 ®ws)Bar(m) =0
for all w1 € Oy and we € N,. Hence fBp(m) =0, and m = 0.

O

Now we look at the universal level. The Banach *-algebra .Z.(Q) consists
of those w € Q, for which z € @(7’2/2) — U(RQ(Tgﬂ(m‘))) extends to a
normal functional w* on @, with as product the one introduced before on
Q4+, with this new * as the involution, and with norm the maximum norm
of | -| and | - *|. We will use the corresponding notation for M and P.
Denote by E* the universal C*-algebra associated with (Q, e) (as explained

in the last section of the chapter 11).

Theorem 7.6.4. Let N be a P-M-bi-Galois object, and /AF/‘\and IAZ“ the
universal C*-algebraic quantum groups associated with resp. M and P.

zNpP) ZLHN)

1. &} has the form ( A i
@ Jorm " gi0) #}(m)
cally strict LL(P)-LL(M)-imprimitivity bimodule.

), with LH(N) a topologi-

D* B¢
cv o Av

bimodule. In particular, Av and D¥ are C*-Morita equivalent.

2. Evis of the form ( ), and then B" is an ﬁ“—f)“—equz’valence

Proof. As a vector space, we have Qy = P, ® O, ® N, ® M,.. Denoting
ZLYN)={we N, |Jw,e N, :Vze .@(’TZ%) twe(x) = w(TZ%(x))},
and similarly for O, it is then easy to see that also
Z(Q) =2, (P)®Z,(0)® % (N)®Z, (M)

as a vector space, since the restriction of the antipode of @@ to M and P
gives their respective antipodes. Since the multiplication of the components
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is easily seen to correspond to a matrix multiplication, we get the first part
of the first statement.

The fact that £} (N) is a topologically strict .2} (P)-.2£}(M)-imprimitivity
bimodule can be proven exactly as in the previous proposition. The only
thing which may not be clear is why this imprimitivity bimodule still has
to be topologically strict. But by the fact that there is a generator for the
universal representation \* of .Z}(M), we can identify (Z(M))* with a
subspace of M (cf. the remark before Lemma 4.1 of [54]). Then the re-
sult follows as in the previous proof, since £} (N) is normdense in N, (and

Z10) in O,).
The second statement follows immediately from the first one.

O

Again, we also have a result on the dual level. Write E" for the universal
C*-algebra of Q.

Proposition 7.6.5. 1. ,,iﬂ*l(Q) is of the form L} (P )(—BEI( )@$1(0)®
LHM) with LH(N) a Banach *-algebra,

2. E" is of the form D*®C*“@® B*@® A" for certain C*-algebras B* and
c,

3. B is the universal enveloping C*-algebra of £} ((3)

Proof Using notation as in the third part of Chapter 11, define £} (N ) =
d - LHQ) - md, and ZLHO) = d .Zl(Q) md . Then the first statement
is 0bv1ous. Deﬁmng B = d“(eg)E“d“(el) and C* = d“(e;)E"d"(es), the

second statement is obvious.? Also the third statement is immediate.
O

Remark: 1t is easy to see that if A and D are two reduced C*-algebraic quan-
tum groups, which are C*-Morita equivalent by a linking C*-algebra with
a compatible comultiplication structure, then the associated von Neumann
algebraic quantum groups are comonoidally W*-Morita equivalent. This is

3The ordering may seem strange, but note that under duality, N corresponds to . ]\Af
but N* corresponds to O. Indeed: W” € Qﬂ ® Qij, while Wi; := EW, Z € Qi ® Q”
Hence B really corresponds to B, which in turn corresponds to N (by U—Weakly closing
B).
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no longer clear (to me) when passing to the universal level: for this to be
true, one would (only) need to show that the supports of the left invari-
ant weights of the two quantum groups, inside the universal von Neumann
algebraic envelope of the linking C*-algebra, are not central.






Chapter 8

Construction methods

In this chapter, we consider the interplay between Galois objects (or coac-
tions) and quantum sub-(or over-)groups.

8.1 Reduction

8.1.1 Restriction of Galois coactions

Lemma 8.1.1. Let ]\//.71 be a closed quantum subgroup of the von Neumann
algebraic quantum group M\, and let o be an integrable right coaction of M
on a von Neumann algebra N. Then the restriction ay of a to My is again
integrable, and 7}, (x) = 7, (x) for x € ]T/[\{

Proof. First, we claim that there is a *-isomorphism ® from the crossed
product N x Mj to the sub-von Neumann algebra of N x M generated by
a(N) and (1®M\{), sending o (z) to a(x) for x € N, and 1®m to 1®m for
me M\{ Indeed: applying a®:tp(¥2(ar,)) to N x M; and using the definition
of restriction, N x M gets sent to the von Neumann algebra generated by
(tnv ® ang)e(N) and (1®1Q@ M!) on L2(N) ® L2(M) ® £2(My), where
ajy is the canonical right coaction of My on M. But this is then a sub-von
Neumann algebra of N ® (M x M;). Using the Galois homomorphism for
s, we can then represent it as a sub-von Neumann algebra of N x M, and
it is clear that this will just be the stated sub-von Neumann algebra. So we

can take ® = (¢1n ® pay ) (@ @ L w2(an)))-
Now by Lemma 6.5.4, we will have that 7, which we momentarily view as
a right representation of A", will restrict to 7, on AY. Hence if p; = poo®,

we see that it satisfies p1(ai(x)) =z for x € N and p1(1 ® (Lt Q@ w)(Vay)) =

271
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(t ®@w)(Uy) for w € (M), where U is the unitary implementation of «;.
By Proposition 5.3 of [85], we conclude that ay is integrable, and then the
equalities 7, () = 7., (x) for 2 € M] also follow immediately.

O

Proposition 8.1.2. Let M be a von Neumann algebraic quantum group,
and My a closed quantum subgroup. Let o be a right Galois coaction of M
on a von Neumann algebra N. Then the restriction ay of o to My is still
Galois.

Proof. As we have seen in the previous lemma, «y is integrable. Further-
more, its Galois homomorphism is a restriction of p,, hence faithful when-
ever p, is faithful.

8.1.2 Reduction of Galois objects

Proposition 8.1.3. Let M be a von Neumann algebraic quantum group,
and My a closed quantum subgroup. Let N be a right M-Galois object.
Denote Ny = {x € N | any(x) € N® M,}. Then the restriction of an to Ny
makes (N1, an,) into a right My-Galois object. Moreover, the reflection P
of M1 across Ny is then a closed quantum subgroup of the reflection P of M
across N, in a canonical way.

Proof. For the right Galois object IV, we will use notations as before.
First note that ay, is a right coaction on Nj: for x € Ny and w € M,, we
have that an((t®@w)an, () = (RtQw)((t®AN, )an(x)) € NQM;. Hence

an, (N1) € N1 ® M;. Since ay is a coaction and Ajs restricts to Ay, on
M, we have that ay, is a right coaction.

Now denote O1 = Rg(N1). Since y0oRg = (Rg®Rg)oay,, and Ry (M) =
M, ([4], Prop. 10.5), we can also characterize O as
01 ={2€0 |v0(z) € M; ® O}
Now denote
P={2e Ni®O; | (an ®10)(2) = (t~x ®70)(2)},

and denote P; = 5131(151), so that P; is a von Neumann subalgebra of
P. Then Ap(P1) € P ® P;. Indeed: applying Bp ® Bp to Ap(z) for
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z € Py, and using that (Bp ® Bp)Ap = (kv ® Bu)an ® o), we see
that ((Bp ® Bp)Ap)(z) € N1 ® By (M) ® O1, so we should only check if
B (M1) € O1®N7. Since (Lo®an)Bar = (Br®iar)Anr, and (Yo®un) By =
(ear ® Bar)Apy, this condition is fulfilled. It is further also easy to check
that we have Rp(P1) € Py and 77 (Py) € P; as well, using the commuta-
tions between the Afj, Rg and TtQ, and the fact that Ry;(M;) = M; and
Tar(My) = My ([4], Proposition 10.5).

Now using the other direction in Proposition 10.5 of [4], we conclude that
(P1,Ap,) is a closed quantum subgroup of (P, Ap) (and in particular, is a
von Neumann algebraic quantum group).

Now note that ay, is clearly ergodic. We show that it is integrable. By
ergodicity, we have a faithful normal weight ¢y, = (tn, ® @ar, )an,. Take
m e .//ZJMl and w € (O1). Then by left invariance of ¢y,

oy (W@ i) Ban (M) = (ewvy @ o ) (W @ vy ) Bary) ® ey ) A, (M)
= ¢ (mw(lo,),

so that (w ® tn,)Bar, (m) is integrable for ¢, . From this, the integrability
of pn, follows.

We now want to show that ay, is a Galois coaction. We do this by al-
ready constructing the associated co-linking von Neumann algebraic quan-
tum groupoid.

Denote Q1 = P, O1 & N1 & M; € Q. It is again easy to check that
Ag(Q1) € Q1 ®Q1, and that Ro(Q1) € Q1. Denote by Ag, the restriction
of Ag to @1, and by Rg, the restriction of Rg to Q1. Denote by vy, the
associated coaction N1 — P; @ N; of P;. Then by symmetry, also vy, is
an ergodic integrable coaction. Denote ¥y, = (¥p, ® t)yp,, and denote
©0, = ¥n, © Rg,. We want to check that the collection ¢p,, o, ,pN, and
@, satisfies the conditions for left invariant nsf weights on a co-linking von
Neumann algebraic quantum groupoid. In fact, apart from trivial cases,
symmetry allows us to reduce to two cases, namely the left invariance of the
weights with respect to 5y, and yn,. For By, the argument has already
been given when discussing integrability of a,. For yy,: choose w € (P)],
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a state @ on N, and = € ///JNI. Then

en (W@ en )N () = o (W@ @ e ) ((eny ® any)vw, (7))
= om (WO D)YN,) @ tary )y ()
= (wW®©)vn)(Iny) - o (2)
= w(ln) - o (D).

Since Rg, is an anti-multiplicative *-involution flipping the comultiplica-
tion, ()1 has the structure of a co-linking von Neumann algebraic quantum
groupoid. But then the map

LN ® LN - LN @ L2 (M) -

Ay, (2) @ Any (y) = Z(Any @ Aary) (oo, (2)(y @ 1))

will be unitary, since it coincides with a unitary part of the multiplicative
partial isometry of 1. Hence ay;, is a Galois coaction.

Since Bp, (P1) = {z € N1 @01 | (an, ®10,)() = (tx, ® 70,)(2)} by con-
struction, with (Bp, ® Bp,)Ap, = ((tn;, ® B, )an, ®Lo, ), we can canonically
identify P;, as a von Neumann algebraic quantum group, with the reflection
of M; across Ny, by Proposition 7.4.19. This concludes the proof.

O

Definition 8.1.4. In the situation of the previous proposition, we call the
right My-Galois object N1 the reduction of N to M1, and we denote

(N17aN1) = (RedMl (N)7 RedMl (aN))'

8.2 Induction

8.2.1 Induction along Galois objects

In this subsection, given a P-M-bi-Galois object N and a left coaction T of
M on some von Neumann algebra, we induce it to a left coaction of P (on a
possibly different von Neumann algebra). This generalizes Proposition 7.7
of [27]. We then show that this correspondence preserves certain properties
of T.
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So let N be a P-M-bi-Galois object. Suppose Y is a von Neumann algebra,
and YT a left coaction of M on Y. Denote by Indy(Y) = Yy the von
Neumann algebra

Yni={ze NRY | (an®uy)x = (txy ® T)zx},
and by Indy(Y) = YTxn the map (v ® Ly)‘YN. Then since ay and vy
commute, it is easily seen that T has range in P ® Yy, and that then Yy

is a coaction of P on Yy.

Definition 8.2.1. In the foregoing situation, we call (Yy, Y n) the induction
of T (from M) along N (to P).

Theorem 8.2.2. The functor (Y,Y) — ((Yn)o, (Yn)o) is naturally equi-
valent with the identity.

Remark: We assume that this takes place in the category of left coactions

for M, where a morphism is (for example) a unital normal complete con-
traction between the spaces acted on, intertwining the coaction.

Proof. Consider the map
Y 5>O0QNRY :z— (B ®L)Y(x).
Then for x € Y, we have

(tlo®@an @uy)(fu ®w)T(z) = (Au @t @ wy)(An ®1y)T(x))
— By ® i @) (e ®T)T(2))
= (Lo@LN®T)((ﬂM®LY)T(x))7

and since (o ® tn) By = (Lo ® Yn) B, also

(a0 ® v ® vy)((Bm ® ty) T () = (to @ yv @ vy )((By @ 1y) T (),
which shows that the given map has range in (Yn)o.
Now choose x € (Yx)o. Then the fact that

(a0 ® N @ ty)(7) = (1o @ YN ® Ly) ()
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implies that z = (By ®ty)(2) for some z € M ®Y, by (a symmetric version
of) Proposition 7.4.19. But also

(B @t ®ury ) (Ap ®uy)(z)) = ((Bm ® ty)(2))
(z)

)

(Br ® 1y )(2))
)

((err ® T)(2)),

so by injectivity of Bas, we have (Ay ® ty)(2) = (tpr ® T)(2), and by the
biduality theorem, Theorem 2.7. of [85], we have z = Y(y) for some y € Y.
Hence the considered map is a bijection.

(to®ay @y
(to ®ay @y
= (Lo®N®TY)
(
(

~— ~—

— o~

Lo®IN®T)
Br @ty ® Ly

Finally, we have for any x € Y that

(v @B @)t @)Y (2)) = (tm ®Bm @ ty)((Am @ y)T(z))
= (Yo® N ®wy)((Bu ®ty)Y(x)),

which shows that the map intertwines the coactions of M.
O

Proposition 8.2.3. Let N be a P-M-bi-Galois object, T a left coaction of
M on a von Neumann algebra Y, and (Yn,Tn) the induction of Y along
N. Then

1. the coaction YT is ergodic iff the coaction Y is ergodic.
2. the coaction Y is integrable iff the coaction Y n is integrable.

3. the coaction Y is Galois iff the coaction Y is Galois.
Proof. By biduality, we only have to prove the ‘only if’ statements.

It is easy to show that ergodic coactions get transformed into ergodic coac-
tions: if x € Yy € N ®Y is a coinvariant element, then z = 1 ® z with
z € Y by the ergodicity of v. But by the defining property of Yy, also z is
coinvariant for Y. Hence ng N =1y ®YT, and in particular, Ty is ergodic
when T is.
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Now we prove the second point. Suppose that T is integrable. Choose
x € Y7 integrable for T, and choose ¢ € £%(0) with & € @(551/2). Put
w = wee € Oy, and put

y=(w®iN®uy)((Bm ®y)Y(z)).

Then y will be an integrable element for Y n: to see this, first note that y
will be in Yy by the proof of the proof of the previous theorem. Next,

Tn(y) = (w®itp ® N ®uy)((ao ®itn ®uy)(Bum ®y)Y(x)).
Choose w' € (N®Y)}. Put 2z = (1o @ W) ((By ® ty)Y(x)). Then
(to @) (Tn(y) = (W tp)ao(2).

Now by the strong form of right-invariance of 1o (cf. Lemma 11.1.8), we
have that z will be integrable for ¥, with

Yo(z) = w'(Iy & (b ® 1y )(Y(2))).

By (a right analogue of) Proposition 4.5 of [30], we conclude that

Yp((w®p)ao(2)) = [857%€1% - ol2).

Hence y is integrable, with

(WP ® iy ) (T (y)) = 05261 - (1@ (ar @ 13) ().

So to show that Yy is integrable, the only thing left to show is that the y of
the above form have o-weakly dense span in Yy. Now clearly, the o-weakly
dense span of such y contains each element of the form ((w®un) By Rty )Y (z)
with x € Y and w € O,. By the biduality property in the previous theo-
rem, it is as well sufficient to show that the linear span of elements of the
form (w ® ty)(z) with w € N, and = € Yy is o-weakly dense in Y. But
this space contains all elements of the form ((w' ® w)By ® ty)(T(x)), with
w' € O4,w € N, and x € Y. By Proposition 7.6.3, it also contains all ele-
ments of the form (w® vy )(Y(x)), with w € M,. But this space is known to
be o-weakly dense in Y (see for example the proof of 7.2.6).

Now we prove the third point. Suppose first that Y is just an integrable left
coaction. Let Ty be the operator valued weight Y — YT associated with T,
and let 1)y = poTy with p an arbitrary nsf weight on Y'Y, Also, one has that
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the operator valued weight (¢Yy ®¢) from (N@Y)* to (1®Y )T restricts
to the operator valued weight Tr, = (¥p ® t)Tn from Yy to 1® (Y 1)*.
Applying Lemma 5.7.9, we see that, if (1@Y ') = YgN C Yy < (Yn)2is
the basic construction, we can realize (Yy)2 on .Z?(N)®.2?(M) as the von
Neumann algebra generated by operators of the form zy*, with  and y of
the form

Appyan(2) 1 L2Y) —» L2(N) Q@ L2(Y) :
All)Y (’U) - (A¢N & Aiﬁy)(z(l ® v))
for ve Ay, and z € A, .

We can also make a faithful copy of N x Yy on Z?(N)® .Z?(Y), similar to
the construction in Lemma 6.5.6. Namely, we have P x Yy € (P x N)®Y,
and we know that the first factor of this tensor product is representable on
Z?%(N) in a standard way. Denote this representation of P x Yy by F. We
want to show that for z € P x Yy, we have F(z)F(l(yN)Q) = F(pry(2)).

We first characterize the subspace of .#?(N)®.£?(Y) corresponding to the
projection p = F(1(y,),)-

Take u € Ty, - Jy,- Then there exists a unique normal functional w, on N
such that wy(2*) = ¥ (z*u) for z € Ay, . Since for z € A7, and arbitrary
w € Yy, we have (1 @w)(z) € A3, by a Cauchy-Schwarz type inequality, we
deduce that (Yny ®:)(2*(u®1)) = (W, ®ty)(z). Then for such u and z, and
v € Ny, , we have

Ay (2)*(Ayy (1) @ Ay, (v)) = Ay (VN ® 1) (2" (1@ v)))
= (wu ®1)(2%)Ayy (v).

Now such w, are normdense in N,, and such z are o-weakly dense in Yy.
Furthermore, we have that

K ={(w®)(z) | z€ Yn,w € Ny}

is o-weakly dense in Y, which was proven while dealing with the second
point of the proposition. Hence

N&Ly

M) (Noe, ) - (L2N) © L2(Y)) € L2(Y)

is a dense subspace.
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This means that p(.Z?(N) ® £?(Y)) will be the closure of Ay (Nry ) -
(L) ®L%(Y)).

Now take z € Yy, y € JVTTN and z € Ay,.. Then we have

F(z)Apye (V) Apy (2) = Aypye(@y)Aypy (2)
= (Aypy ® Ay, )(zy(1®2))
= 2Aypyeu(y)Ayy (2)
= F(Tn()Ayy@(y) Ay (2),

which shows that F(Y y(z))p = F(z) for z € Yy.

Now choose 1 € .£?(P) and € € @(6}3/2), and put w = we ,, and ws = Wst/2e -
p 2

Let Uy, be the unitary implementation of Y, and denote 9y, = po Ty,
(where we identify YT with Iy®Y T = YY¥). Choose z € A1y, - Then for
y € A, we have

@ @)Uy Ay, (DAu(y) = (@@ 0)(Uyy)Ayy, (29)
= Auy, (w5 @) Tn(@))y).

by Definition-Proposition 6.3.11. Hence (ws ® t)Yn(x) € A7, = with
Ary (w5 @ )TN (7)) = (w® 1) (Uyy ) Ay (),

by Lemma 5.7.8. Applying F', we get that

Apyen (Ws @ )TN (7)) = F((w ® 1) (Uyy ) Anen) (2)-

Applying the left hand side to Ay, (y) with y € A3, , we get

Ayen (Ws @ )TN (@) Ayy (y) = (Apy ® Ay, ) (w5 @ )Y (2))(1 @)
= (Ayy @ Ay ) (((ws @ 1) yv) @ 1) (z(1 @ y)))
= (W®)(Up)@1)(Ayy @Ay, )(2(1®Y)),
with Up the unitary corepresentation belonging to v, again by Definition-
Proposition 6.3.11. Since (w®¢)(Up) @1 = F((w®t)(Wp) ® 1), we arrive

at
F((w® ) (Uv)Ayan (@) = F(0®0)(We) @ 1)Ayyen (@)

for z € A7, . Hence for z € P, we have F(7y,(2)) = F(z® 1)p.
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From these two calculations, it follows that F(z)F(l(yN)2) = F(pry(2)).

Now suppose that T is Galois. Then to finish the proof, we only have to
show that p = 1. But take y € .4, . Choose x € Y square integrable for

Y, and choose ¢ € £?(0) with € € _@(551/2); put w = we ¢ € Oy, and put
2= (w®uwv ®w)((Bu ®1y) T (x)).

Then by the proof of the second point (and a Cauchy-Schwartz type inequal-
ity), we know that z is square integrable for Y. We can write

Ay (A (5) = (A ® Ay ) (w @ i ®13)(Bar @ ) () (1 ®))
= (w2 ®OWH)) © 1) (A, ® Ay ) (T()(1@ ),

the last step following by Proposition 4.5 of [30]. Since the second leg of
(W3)* is o-weakly dense in @12, and since elements of the form (Ay,, ®
Ay, ) (Y (2)(1 ®y)) are dense in L%(M) @ £*(Y), by the assumption that
T is Galois, we see that the linear span of elements of the form Ay g, (2)7,
withz € A7, andn€ Z2(Y), is closed in Z?(N)®.ZL?(Y). So we are done.

O

8.2.2 Induction of Galois objects

Proposition 8.2.4. Let M\l be g\closed quantum subgroup of the von Neu-
mann algebraic quantum group M. Let (Ni,an,) be a right Galois object
for My. Then the induced coaction ay = Indy(an,) of an, by M makes
N := Indp(N1) a right M-Galois object. Moreover, if Py is the reflection
of M\l across Ny, andAﬁ the reflection of]/\/[\ across N, then 161 s a closed
quantum subgroup of P, in a canonical way.

Proof. We recall that N = {z € N1 Q@ M | (an, ® tym)z = (tny ® Yar)z},
where ;s is the canonical left coaction of M; on M, and that ap is the
restriction of tn; @ Aps to N.

First, we show that ay is ergodic. Suppose z € N and ap/(z) = 2 ® 1.
Then (x4, ®Ap)(2) = 2®17, 80 2 = @1y with z € N;. Since z®1y, € N,
we get an, (x) = z® 17,. So x is scalar by ergodicity of ay,, and hence z
is scalar.
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We show integrability of a. Choose m € .#, . Choose w € (O1)], and
denote

z=(w®utn ®tm)((Bn, @) ym)(m) € N1 @ M.

Then z € N: we have

w® N, ®tar, ® tar)((to, @ an, @ tar)(Ban, @ ear)yar) (m)

w® N, @ tar, @ ar)((Bar, ® tar, ® ear)(Ans, @ ear)yar)(m)
w® N, ®tar, ® ear)((Bar, ® tar, @ tar) (ear, @ yar)yar) (m)
LNy, ® 1) (2).

(an, @uum)(z) =

o~~~

Furthermore, z will be integrable:

(v ®@pnr)(an(z)) = (v ® pur)(2)
(W@ ear) (B, ((Lary, ® par)(var(m))))
w(101)90M(m)7

where (tar, @ oar)(Yar(m)) = @ar(m) follows from the fact that (1@ A)I; =
(It ® t)A (cf. Proposition 12.2 of [54]).

Finally, we show that the coaction is Galois. For this, it is enough to show
that the canonical map pa, : N x M — B(Z?(N)) is injective, by the
results of the second section. But by Lemma 6.5.6, N x M is a type I factor,
so that this must be necessarily so.

We now prove the second part of the proposition, concerning the relation
between P1 and P. First note that Q1 can be represented on

L2(Ny) 2 o
( 2000 ) s% ZL3(M)

by the map 7" := @12 ® ¢. In particular, 61 is then represented by
@i,
operators

YO A = LANY) @ LE(M) > LAM) =~ L2(My) ® L2M).

28 2

Since the Galois uniEary éNl for ay, lies in 61 ® N7, we can thus form the
operator (7" ®1)(Gy,). Put

Gind == (Wi 13((7™ @ 0)(Gny )2,
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which is an operator
Gind : @ L2(N)) @ L2(M) — L2(M) @ L2N)) ® L2(M).
Clearly, Gind € B(A#, L*(M )) ® N1 ® M, and furthermore,

(t®t®v0)(Gina)

= (Wipu((@™ @ ) Wiz (7™ @ )(Gwi )z
= Wipu((@™ @@ ) (Wi 13(Grni)i2) © 1)
= (t®an, ®)(Gina).

Hence Ging € B(A#, L2 (]/W\ )) ® N. Moreover, it is easily seen that
(t® an)(Gina) = (Wi7)13(Gina)12

Hence, if G denotes the Galois unitary of (N, ay), with the second leg iden-
tified with operators on Zz(Nl) ®$2( ), we have (¢ ® an)(G%Gina) =
GNGmd ® 1p7, and thus Gig = GN(u ® 1y) for some unitary u : S —
Z2(N). Since u is clearly right M- linear, we obtain an embedding N -

N :z — urind (x), which can then be extended to a unital normal embed-
ding F': @1 — @

In particular, we have a unital normal embedding ]31 — P. So to see if
this makes P; a closed quantum subgroup of P, we should show that the
embedding F' intertwines A@l and A@. Clearly, it is already sufficient to

check this on ﬁl. Now
(u®1n, @ 1y) - (7™ @ 1) (G, T2) = G (Wips,
by deﬁnitio~n of u. S~ince the: first leg of éj‘vl is o-weakly dense in ﬁl, and
(Ag, ®)(GR,) = (Gny)33(G N, )15, we have to see if
(A @GN (Wip1s) = (GN)23a(Wi7)24 (G )134(Wip) 14

Now the left hand side equals (é}‘v)234 (G}‘V)134(W

77)14(Wi7)24. So, we should
check if

(Gi)1aWi)1a(Wip)as = (Wip)2a(Gr)1sa(Wip)a. (8.1)

Now we use that (: ® ay)(Gy) = (Wﬁ)lg(é]\])lg (with the second leg liv-
ing on Z?(N1) ® £L%(M)). Since ay is Ay applied to the second leg
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of an element of N, we deduce from this that (War)i(Gn)12a(War)za =
(Wi7)14(G N )123 (the middle legs living on respectively Z?(Ny) and L2(M)).
Rearranging indices, this becomes

(Wii)24(Gn)132(Wip)3s = (Wip12(Gw)1sa-

Using this equality, the left hand side of (8.1) can be rewritten as follows:

(GR)13s(Wip)1a(Wip)aa

= (GN)13a(Wi) (W) 2a(Wi)12

= (Wip)2a(Gn) T3 (Wip)5) (Wip)2s(Wip)1z)
= (WM\)24(GN)132(WM\)12~

So the identity (8.1) is proven if we can show that
(Wii)2a(GN)Fa2(Wiphiz = (Wip)2a(Ga)1sa(Wip)a. (8.2)
After canceling and rearranging indices, the identity (8.2) becomes
(GV)Tas(Wipis = (GN)ias(Wipa

But both sides equal (u® 1y, ® 13 ® 1a7) - (71 ® 1) (G, )*)12. So we are
done.
O

Lemma 8.2.5. Let ]/\Zl be a closed quantum subgroup of the von Neumann
algebraic quantum group M. Let (N1, an,) be a right Galois object for M.
Then Indpr(N1) = Indyn, (M), and the restriction to Py of the left coaction
of P on Indy(N1) coincides with the left coaction of Py on Indy,(M).

Proof. The fact that Indy/(N1) = Indy, (M) is immediate from their respec-
tive definitions. We denote this common von Neumann algebra again with
N.

Now from the proof of 8.2.4, it follows that the inclusions Z/\J\l C M and
P1 c P in fact come from an inclusion of linking von Neumann algebraic
quantum groupoids Q1 c Q Completely similar as to the situation for von
Neumann algebraic quantum groups, this implies that we have a canonical
left (translation) coaction of Q)1 on @, splitting into separate morphisms
’YCkQ,ij : Qij — (Q1)ik ® Qij, and a canonical right (translation) coaction of

Q1 on @, splitting into separate morphisms O‘l(fg,ij 1 Qij = Qi ®(Q1)kj, both
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equivariant with respect to Ag.

Then 75’22 = v, by definition. Now a completely standard argument shows
that

Yo (N) = {z € NL@M | (An,)12 ® tar) (2) = (13, ®7022)(2)}-

Hence, again by definition, N = 4%, (7 (N)). Then by equivariance, the left
coaction of P, on N = Indy, (M) corresponds under my to the left coaction
Y1y of Py on my. Since also 7&2711 = ~yp, the canonical left coaction of P; on
P, equivariance lets us conclude that

(tp, @YN) (YN, @) = (vp @ en) YN

on N € N; ® M, which, by the definition of the restriction of a coaction,
concludes the proof.
O

For the following definition, recall that a short exact sequence of von Neu-
mann algebraic quantum groups (cf. Definition 3.2 of [88]) M; — M — M,
consists of three von Neumann algebraic quantum groups M;, M and My,
such that M; is a closed quantum subgroup of M, My is a closed quantum
subgroup of M, and, denoting by s the canonical left coaction of Ms on
M, we have My = M. (We note that then also M; = M“M | where a)y is
the canonical right coaction of My on M, using Proposition 3.1 of [88] and
the fact that M is invariant under Ry by Proposition 10.5 of [6].)

Proposition 8.2.6. Let M1 — M — My be a short exact sequence of
von Neumann algebraic quantum groups. Suppose that (Na, ) is a right
Galois object for Ma. Denote

(N, an) = (Indg(N2), Indg;(an,))
and
(N1, an,) = (Redn, (N), Redyr, (an)).-

Then we have a canonical isomorphism of right Mi-Galois objects between
(N1, an,) and (My,Apr ). Moreover, by reflecting, we then obtain a short
exact sequence

(Pl Z)Ml — P - PQ

of von Neumann algebraic quantum groups.
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Proof. Denote by ~js the canonical left coaction of My on M. Then N;
consists of those z € No ® M such that (an, ® tar)(2) = (tn, @ Yar)(2) and
(@A) (2) e NOM ® M;. Now if x € M and Ay(z) € M ® M, then
x € My. Hence if z € N1, then z € Ny ® M7 by the second condition on such
elements. But also M; = M. Hence by the first condition on an element
z € N1, we deduce that z € N;NQ ® My, = C® M;. This provides a canonical
isomorphism N; — M;. It is easily seen that (N1, 1) = (My, Ay, ) as right
Galois objects under this isomorphism. Hence we also obtain a canonical
isomorphism between the von Neumann algebraic quantum groups P, and
M.

Now by the Propositions 8.1.3 and 8.2.4, we have that ]32 is a closed quantum
subgroup of ﬁ, and P; a closed quantum subgroup of P. To end the proof,
we should show that if vp denotes the canonical left coaction of /% on P,
then P, = P?. This is equivalent with proving that P~ P5 = P, on Z?(P).

Now we can place B(.Z?(P)) inside B(Z?(N) ® .£*(0)), sending x € P to
Bp(z) and z € P to # ® 1. Then we should show that 8p(P) N (]35 ®1) =
Bp(Py). For this, it is sufficient to prove that N n f’é = N; (which equals
1® My). Indeed, if then z € P and the first leg of Sp(z) € N ® O commutes
with Py, then Bp(z) € N1 ® O. Since (ay ® t0) = (tn ® 70) on the range
of Bp, we then also have Sp(z) € N1 ® O1. But then z € P; by the specific
way the imbedding P; — P was defined in Proposition 8.1.3.

So we are left to proving that N n ]35 = N;. Now by Lemma 8.1.1 and
Lemma 8.2.5,

NAP,={ze NS Ny ®@M | (yn, ® tar)(x) = 1p, ® x}.

Since vy, is ergodic, we must have z = 1y, ® m for some m € M when
z€N NPy But (1® M) N =1® M, which concludes the proof.

O






Chapter 9

Application: Twisting by
2-cocycles

In the first section of this chapter, we will study a specific class of Galois ob-
jects, namely those obtained by twisting with a 2-cocycle. On the dual side,
this corresponds to those linking von Neumann algebraic quantum groupoids
built upon an identity linking von Neumann algebra. In the second section,
we show the relation between Galois objects for the tensor product of two
von Neumann algebraic quantum groups and the Galois objects of its con-
stituents.

9.1 2-cocycles

Let M be a von Neumann algebraic quantum group, and let 2 € M ®]TJ\ be
a unitary 2-cocycle, i.e. a unitary element satisfying

(1@ AHQ) = (Q@1) (A5 ®)(9).

Denote by & the trivial left coaction C — M ®C of M. Then (,Q) is a
cocycle action ([88], Definition 1.1). Let

—~

N=MxC:=[w®)(Wg*) |we Mok

X
Q
be the cocycle crossed product ([88], Definition 1.3). (Actually, one should

take the von Neumann algebra generated by elements of this last set, in stead
of just the o-weak closure, but it will follow from our Lemma 7.2.6 and the

287
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following proposition that this is the same.) Then there is a canonical right
ergodic coaction ag of M on N, determined by

ao((w® )W) = (w @1 @ ) (Wip)s(Wip12€212),

where w € M, ([88], Proposition 1.4 and Theorem 1.11.1). Furthermore, it
is integrable ([88], the remark following Lemma 1.12), and we can take the
GNS construction for ¢ in Z£?(M), by defining

Apy (w0 ® ) (W5 2%)) := Aur((w @ ) (W)

for w € M, well-behaved ([88], Proposition 1.15). Finally, (V, aq) is a right
Galois object for M, since the unitary W=Q* € B(£%(M)) ® N satisfies
(L ® a)(W5*) = (Wip)is(Wip) 129002,

so that agq is semi-dual (see Example 7.1.2).

Definition 9.1.1. A right M-Galois object N _ts called a cleft Galois object
for M if there exists a unitary 2-cocycle Q) € M ® M such that N = (M X
Q

C,aq).
The following proposition is not very surprising.

Proposition 9.1.2. Let Q€ M\@\M\ be a unitary 2-cocycle for a von Neu-
mann algebraic quantum group M, and let N be the associated right M-
Galois object. Then the Galois map G equals W;Q*.

Proof. Choose &,1,¢ € £%(M), and an orthonormal basis & of Z2(M).
Further, let m € M be in the Tomita algebra for ¢, and denote W=
W¢ A (m)- Then by Proposition 1.15 of [88], (v @ ()(W52*) € Ay, (W' ®
DWi) € Ay, and

An (@' @) (W5Q") = A (W @ 1) (Wiz))-
So

(L @we ) (G) Ay (@' @ 1) (W)
= (1 ®@we ) (G)AN((W @) (W50¥))
= Au((wey ® ) (aa((W ® ) (W52%))))
= Au((W' Quwey @ (Wi 1s(Wi)12072))
= A(Q (W Quwee, @wem ® )(Wipha(Wip)1sQs)),

%
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where the sum is taken in the o-strong-topology.

On the other hand, using Result 8.6 of [56], adapted to the von Neumann
algebra setting, we get

(t®@wen) W) Au (W @) (Wip))
= D (®we ) (Wi (@ we e () A (' © 1) (W)

i

= T (e @AM ©ues ) ) 8V )

= DAl Oueg @y ®AWg)u W) s

so that the result follows by the closedness of Aj; and the density of elements
of the form Ap((w' ®1)(Wy3)) in ZL2(M).
O

Proposition 9.1.3. Under the map LQG from Galois objects to linking
von Neumann algebraic quantum groupoids, cleft Galois objects correspond
precisely to those linking von Neumann algebraic quantum groupoids whose
underlying linking von Neumann algebra is the identity.

Proof. Let €2 be a unitary 2-cocycle for a von Neumann algebraic quantum
group M, and N the associated right M-Galois object. We already know
that £2(N) can be identified with #2(M). It is also not difficult to see that
under this correspondence, the unitary implementation U of ay /b\ecomes
just the regular right multiplicative unitary Vj;: Take again m € M in the
Tomita algebra for ¢, take ( € £2(M), and denote w' = WEA o (m)- Then

for w € M, such that w(-8,;) extends to a bounded normal functional ws
on M, we have

(L @w)(U)AN (& @) (W50"))
= AN ((W'(- (L ®ws)(Wip)) @ ) (W2%))
Apr((@'(- (L®wa)(WM))®A)( )

Hence Z?(N), as a right M-module, is just £?(M) with its natural right
M-module structure. Hence (Q, e) will be the identity linking von Neumann
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algebra for M.

Conversely, suppose that (@, e) is a linking von Neumann algebraic quan-
tum groupoid built upon the identity linking von Neumann algebra for the
underlying von Neumann algebra of some von Neumann algebraic quantum
group M. Then in particular, Q12 = M. Put Q = A12( 7). Then for
z € M, we have Aa(z) = Q- A (z). So from the coassociativity of A1, it
follows immediately that (2 satisfies the 2-cocycle relation. Moreover, it is
unitary, since Ag(1 )" = An(1 77) and 812(1]\7)821(1]\7) = 811(1]\7), and

Aoi(1)A (1) = A (1)
Further, since A1z = Agy in this case, we have for x,y € A, that

(W2)* A0 @A) = Ap©Ag Ry Eel)
- 2-(A®AAFHEEL)
= Q. WE- (Ag(@) @ An(y),

from which it follows that for the right M-Galois object N associated to
(Q,e), the Galois unitary G equals Wi 2*. Since N is equal to the o-weak
closure of the first leg of G, and since (1 ® an)(G) = (Wﬁ)lgélg, it follows
that N is just the cleft Galois object associated to 2.

O

Note that when reconstructing a linking von Neumann algebraic quantum
groupoid from a right cleft M-Galois object N, we will always identify M
with P by first identifying £ 2(N) with .£?(M) in the manner recalled at the

beginning, and then taking the standard left representation of Mon.# 2(M).

We will now also call such linking von Neumann algebraic quantum groupoids
with underlying identity linking algebra cleft linking von Neumann algebraic
quantum groupoids, and the associated bi-Galois objects cleft bi-Galois 0b-
jects.

Corollary 9.1.4. Let ]T/I\/bg a von Neumann algebraic quantum group, and
Q a unitary 2-cocycle in M @ M. Then the Q-twisted Hopf-von Neumann
algebra (M, Aq), where

Aq(m) = QA5 (m)Q*,

1s a von Neumann algebraic quantum group.
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Proof. This follows straightforwardly from the proof of the previous proposi-
tion. For then we have that in the linking von Neumann algebraic quantum
groupoid (@, e) for the cleft right Galois object N associated to €2, the corner
P = @11 equals M , equipped with the coproduct

312(1)322 (l’)&gl(l)
QA =Q*.

Au(l’)

So by Theorem 7.3.7, (]\7 ) AQ) is a von Neumann algebraic quantum group.
O

Remark: Corollary 9.1.4 answers negatively a question of [46]: the 2-pseudo-
cocycles € of [46] are not 2-cocycles, since SUy(2) is not a quantum group.
This of course does not rule out the possibility that the SU,(2) are cocycle
twists of each other in some other way.

Proposition 9.1.3 also shows that there is no ambiguity in the definition of
a cleft bi-Galois object: if (N,yy,an) is a bi-Galois object, and the asso-
ciated right Galois object N is cleft with 2-cocycle €2, then (N, ~yy) will be
cleft with 2-cocycle Q*.

Finally, remark that the reduced C*-algebra D of the reflection P of M
across a cleft M-Galois object will in general not be the same as the reduced
C*-algebra Aof M , as the example in section 10.3 will show. However, it
will still be C*-Morita equivalent to the original one, by the results of the
final section of the sixth chapter.

For the following proposition, recall that if M is a von Neumann algebraic
quantum group and €21, Qs are two unitary 2-cocycles in M ® N M then 4
and €9 are called cohomologous if there exists a unitary v € M such that
(v ®@v)h = Q2 - Ag(v). We will call Q1 and Qg centrally cohomologous

when we can choose v € Z(M).

Proposition 9.1.5. Let M be a von Neumann algebraic quantum group.
Then

1. two cleft right Galois objects are isomorphic iff the associated 2-cocycles
are cohomologous, and

2. two cleft bi-Galois objects are isomorphic iff the associated 2-cocycles
are centrally cohomologous.



292 Chapter 9. Application: Twisting by 2-cocycles

Proof. Suppose two isomorphic cleft right Galois objects N; and Ny are
given, with respective associated 2-cocycles €21 and €. Let ® be the asso-
ciated isomorphism between the respective linking von Neumann algebraic
quantum groupoids Q1 and Qg Put u = ®(e2) € M. Then u will be a

unitary, and
Ty _( uzu* uy
q><< . ))_ < o ) (9.1)

Since (2 @ ®)Ay (z) = Ag, (P(z)) for z € M, we get

wew = (Weuwlg ()
= (P®P)A Nl(lﬂ)

I
i)\e
&

and hence €y and €3 are cohomologous. If N1 and N3 are isomorphic cleft
bi-Galois objects, then we must also have uzu® = x for all x € M, hence €y
and 2o centrally cohomologous.

Conversely, given two 2-cocycles which are (centrally) cohomologous by some
(central) unitary u € M, it is clear that if we define ® by the formula 9.1, this
will be an isomorphism between the corresponding linking von Neumann
algebraic quantum groupoids, whose dual will be an isomorphism of the
corresponding (bi-)Galois objects.

O

This proposition shows that the set of equivalence classes of 2-cocycles, under
the equivalence relation of being centrally cohomologous, can be imbedded
in the groupoid constructed in section 7.5. It is easy to see that the com-
position of two cleft bi-Galois objects is again cleft, with the product of the
two associated 2-cocycles (in the proper order) as the associated 2-cocycle.
Hence the set of isomorphism classes of cleft bi-Galois objects forms a sub-
groupoid of the ‘2-cohomology groupoid’ of section 7.5.

Proposition 9.1.6. Let M be a von Neumann algebraic quantum group,
Qe M®M a unitary 2-cocycle, and (N, ay) the associated cleft right M -
Galois object.

1. The one-parametergroups TtM and TtP on M are cocycle equivalent.



9.1 2-cocycles 293

2. The 2-cocycles 2 and (Tt @Tt )(2) are cohomologous.
3. The 2-cocycles Q and Q := (R ®@ Ryp)(XQ*Y) are cohomologous.

Proof. Denote by u; = V” V_Zt € M the cocycle derivative of 5 with re-

spect to @7, so that usiy = usaé\/[(ut). Denote v; = V V_”. Then also
vt € M , since V’]'f, and V%I implement the same automorphism on M'. Fi-
nally, denote X = JyJy, then X is a unitary in M for the same reason.

We show that the one-parametergroup v; is a I-cocycle with respect to 7M.

By Lemma 7.2.15 and Proposition 9.1.2, we have
(Vi @uVE) (W) = (W5Q)(VE @u V).

Since V“ ® Vit commutes with WA and Vi implements Tt on M the
left hand side can be rewritten as (1 ® ut)W’\(Tt ® oy )(Q*)(V}Z ® V’A%),

and so, bringing Ws; and (VY; ® V?\Z) to the other side, we obtain
Agi(ug)(m @ o) (%) = Q* (v @ wy).
Hence

(), @ 1L)(2%)
= QAM(uSU ( ))( s+t®aé\i|[—t)(9*)
(

o)

Vst QUsyy = AM

= QAL (u) (M @My (%)
(M@ ><QA () (7 @ o 1)(0%))
= 07 (0) @uso M (uy),

from which the cocycle property of v; follows.
Then Tt will be cocycle equivalent with Tt by v, since Ttﬁ is implemented
by V4.

Now note that v; also equals PPy, (by definition of Py). So using the
third equality of Corollary 7.2.7,

W (0 @ ve) (P @ Pif) = (Pir @ v Py ) W *.
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Using that P]& = P]%, taking Wz and P}\} ®P}@ to the other side, and using
that P}& ® P}& commutes with WM’ we arrive at

O (vr @ vr) = Agy (v) (i @ 7)),

which proves the second statement.

Finally, as observed already in Proposition 9.1.3, the unitary implementation
of ap is just Vi itself. So by Lemma 7.2.4, we have

W= (Iy @ JN)E = SVrS(J5 ® Jn) W5 Q*.
Multiplying to the right with (Jy; ® Jas)X, we get
Wo"(X®X) = SVuEZ(1®X)(J5® Ju) Wi (Ju ® Jy)E
= SVuE(1®X)(J5 @ Ja)We(Ju @ Ja) SQ*
= SVuE(1®X)(J5 Q@ Ju)EVarE(J5 @ Ja) WO
= SVuE(1®@X)SVySW=0*

= (1®X)W5,

)
from which Q*(X ® X) = A=(X)Q* immediately follows. O

We have the following formula for the multiplicative unitary Wa of (M\ , AQ)

Proposition 9.1.7. Let M be_a von Neumann algebraic quantum group,
and Q a unitary 2-cocycle in M @ M. Then the left regular multiplicative
unitary W of the reflected von Neumann algebraic quantum group P equals

ng = (JN (29) J]T/[\)QW]%/[\(JM ® JM\)Q*.

Proof. Since the underlying linking von Neumann algebra of the associated
linking von Neumann algebraic quantum groupoid is the identity linking
von Neumann algebra M & M>(C), we can identify the GNS-construction
: L2(M) L*(M)
with — —~
L2 (M) Z2*(M)
Kgl becomes Aps. Then from Lemma 7.3.6, and the fact that Agl(x) =
A (2)Q*, we conclude that

>, and we then have that /A\lg equals Ay, while

WsQ = (Ju®J7)G(In® )"
= (IN® I QW) (In @ I;).

The proposition follows.
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The following is related to Proposition 4.5 of [10].

Proposition 9.1.8. Let M, P, and P> be von Neumann algebraic quan-
tum groups. Let (Ni,v1,1) be a Pi-M-bi-Galois object, and (Na,~y2,a3)
a Py-M-bi-Galois object. Suppose that £?*(N1) and L*(Na) are isomor-
phic as right M -modules. Then there ezists a 2-cocycle Q of ]32 such that,
with (Nq, Y, aq) the natural cleft bi-Galois object associated to 2, the bi-
Galois object (N1,7v1,a1) 1is isomorphic to the composition of (Nq,Yq, aq)
and (N2, y2, a2).

Proof. By the theory in section 5.5, it is easy to see that the commutant of
the direct sum right M-representations on %2 (N7) and .Z?(N3) will be iso-
morphic to the linking von Neumann algebra underlying the composition of
(N1,71, 1) and the inverse of (Na, y2, ag). Since the right M\—representations
are isomorphic, this composite linking von Neumann algebra will be isomor-
phic to the identity linking von Neumann algebra. Hence its associated
bi-Galois structure is cleft, and the proposition follows.

O

Corollary 9.1.9. If M is a von Neumann algebraic quantum group with M
a properly infinite factor with separable predual, then any right M-Galois
object (whose underlying von Neumann algebra is separable) is cleft.

Proof. By the previous proposition, this is clear if M is type I1I, since there
is then only one separable right M-module up to isomorphism. Also, since
a right Galois object N for a finite-dimensional von Neumann algebraic
quantum group is finite-dimensional itself (see the remark on page 224), the
proposition is also clear for the type I, case.

We are left with the type Il case. For this it is enough to prove, that if NV
is a right Galois object for M with M type I, then also the von Neumann
algebra P of the reflected von Neumann algebraic quantum group is type
IT;. Now by Theorem 9 of [37], we know that M will be a compact quantum
group, with its unique tracial state as the (left and right) invariant state.
Hence P is also a compact quantum group of Kac type by Proposition 10.3.2,
and so P is type II;.

O

9.2 (Generalized quantum doubles

We now treat a very special type of 2-cocycle. Let M; and Mj be two von
Neumann algebraic quantum groups, and let Z € M1 ® M2 be a bicharacter
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in the sense that
(A1 @ U)(Z) = Z13Z23,

([, ® AQ)(Z) = 213212.

Then it is easily checked that
QZ = (ZZZ)QS € (]/\4\1 @]/\Zg) X (]/\4\1 ®J/W\2)

is a unitary 2-cocycle for the tensor product von Neumann algebraic quan-
tum group M = M1 ® M3 (whose comultiplication is Ad(X)23(Ag; @Az ).

Definition 9.2.1. (c¢f. section 8 of [4]) In the above situation, we call the
Qz-twisted von Neumann algebraic quantum group of M = M; ® My the
generalized quantum double (of My and My with respect to Z), and denote
it as M.

We also denote M. ~ then for ]\/4;

The following result was proven for Hopf algebras in Proposition 12 of [71].

Proposition 9.2.2. Let My, My and P be von Neumann algebraic quan-
tum groups, and put M = M; ® My. Let N be a P-M-bi-Galois object.
Then there exist ‘two von Neumann algebraic quantum groups Py and Ps, a
bicharacter Z € P ® P, and P;-M;-bi-Galois objects (N;, «;,7;), such that
N is isomorphic to the composition of the Py ® Po-Mj ® Ms-bi-Galois object
N1 ® Ny with the canonical Pyz-(Py ® Py)-bi-Galois object.

Proof. Denote
Ni={zreN|an(z)e N® (M ®1)},

N2 = {JJEN | aN(ac) EN@(l@Mg)}

Define a1 : N —» N1 ® M; by aq(z) ® 1y, = an(z), and similarly ag :
Ny — Ny ® Ms. Then by Proposition 8.1.3, (N;, a;) will be a Galois object
for (MZ', Az)

Denote by G ~; the Galois unitary for N;, and by Gy the Galois unitary
for N. Denote by ¥ the representation of N; on ZL%(N). Denote G,, =
(e @T)Gn, )13((t ® )G N, )23, which is a unitary

LN ® LN, @ L2(N) — L2(My) @ L2 (M) @ L2(N).



9.2 Generalized quantum doubles 297

Then interpreting (¢ ® aN)én as an element inside (31 ® 52 QN ® M Mo,
we compute that

14((L®W{V)GN1)13(WA7 )25(GN, )23
N1 (Wig )2 (0 © 75 )Gy )23
@7 )GN )13((L @ 75 )G, )23

We conclude that (:®@an)(GXGy) = (GXGN)®1s, hence Gy = Gr(u®1y)

for some unitary
u: L2N) > L2(Ny) @ L3(Ns).

Moreover, u is then right M-linear. By Proposition 9.1.8, there exists a
unitary 2-cocycle 2 € 131 ®]32 such that N is isomorphic to the composition
of the P, ® P>-M; ® Ms-bi-Galois object N1 ® No with the canonical Pq-
(P ® P»)-bi-Galois object.

So to finish the proof, we should show that Q € (P} ® P5) ® (P, ® P,) arises
from a bicharacter. For this, we first express u in a more concrete way. Take
x € Ji{le and y € Ay, . Then it is easy to see that zy € Ny, for

(L@ pm)(an(y*z zy))
= (L®pm @) (an, (y)isan (°2)12an, (y))
= (®om)(an, () ((®oum)(an, (z%2)) @ an, (y))
= on (@)en: (y)-

Since for x € A,,,,, we have

PN

Gn (AQON®LN (JJ ® 1N)) A§0M®LN (O‘N (33))

and for x € A, and y € A, , we have

(GN1)13(GN2)23(A<,0N1®<,0N2®LN (.%' Xy 1N))

= (Ale QP My RN ) (a(J)\I[)l (z) 1304(])\1132 (y)23),

we deduce that
u* (AN, (2) ® An, (y)) = An(2y)
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for x € A,y and y € Aoy, .

It follows immediately from this that u is left Ni-linear. We also want to

show that uCn(z) = (1®Ch,(x))u for z € Ny. Clearly, for this it is sufficient

to show that o = o, on Np. Now let af\\,b be the restriction of an to

2

Ms. Remark that in this case a]]‘\? is determined by

(on ® o)y (@) = (1 ® tar, ® Mg, (an(z))

e My .
for x € N. Hence it is clear that N®~~ = Nj. Moreover, since for z € N7,
we have

(tN @ty ® (ear, ® Pas) Ansy )(an (2) = (tn @ Lary ® pary)an (),

we get by Lemma 8.1.1 that
T :=ay o (tn ® tag © par,) 0 @

is an nsf operator valued weight N — Nj;. It is also clear then that

on = N, o T, by Fubini. We conclude by Lemma IX.4.21 of [84] that

: PN . PN.
ofN restricts to o, "' on Nj. By symmetry, o/~ restricts to o, 2 on Na,

which is what we needed to prove.

Now we can show that the 2-cocycle €2 is in fact of a special form. First
note that by the general theory, it will equal the operator

(1®@u34)G (1 ®u3y) (G, )13(G vy )2,24-
Since wu is left Np-linear
(1®@u3)Gi(1®u5,) (G )13(Gy)24(z®@1®1®1
(1 ®u3a)GR (1 @u3y)(ay, )(2)13(Gny )13(G e
1 ® uz)Gi(aF)(@)13(1 @ udy) (G )13(G vy )24

(
= (1Qus)(zr®@1@1)GHI®ufy)(Gn,)13(Gry)2
(z®1Q1® 1)(1®uss)Gi(1 ®uiy) (G, )13(Gny ).

)
)

24

Hence the first leg of Q2 lies in P n N{. Since this relative commutant is
trivial, we deduce that Q € (1 ® 152) ® (]31 ® ﬁz) Now we have also shown
that (1®Chn,(N2))u = uCn(N3). From this, it easily follows that the fourth
leg of Q commutes with Cn,(N2), so lies in Na. Since ]32 NNy=C- 15,
also the fourth leg of ) is trivial. Hence €2 = ¥93K93¥93 for some unitary



9.2 Generalized quantum doubles 299

Keﬁ1®]32.

Some calculation with the 2-cocycle identity yields that
Ky(1®(®Ap)(K)) = Ki3(Ap ®)(K)®1),
and hence these expressions must equal Zs3 for some unitary Z. Then
(Ap ®)(K) = Ki3Z2s,
(t® A]'_:,Q)(K) = K13Z12.
Using coassociativity, we get
®L®Ap)(®Ap)K) = (®®Ap)(Ki13)Z12
= KuZizZs,
while
(L®Ap @)(@ARNK) = Kult®Ap ®1)(Z12),

so that (@ Ap )(Z) = Z13Z12. A similar calculation with Ap shows that
Z is in fact a bicharacter. But now

(L@Aﬁz)(KZ*) = Kngngf‘zZi"g
= (KZ)TE}?

and similarly (Ap ® t)(KZ*) = (KZ*)13. So
Ad(D)23((Ap @ATNKZY)) = (KZ*) @1,

which means that K = ¢Z for some ¢ € Cy by Result 5.13 of [56]. Since
and ¢~1Q are centrally cohomologous, the bi-Galois object N is then indeed
isomorphic to the composition of the Py ® Po-M; ® Mo-bi-Galois object
N7 ® Ny with the canonical Pz-(P; ® P,)-bi-Galois object.

O

Then also Theorem 2.1 of [71] can be immediately adapted to yield

gorollary 9.2.3. IfJTJ\ is a generalized quantum double 0]1]/\4\1 and ]/\4\2, and
P is comonoidally W*-Morita equivalent with M, then P is a generalized
quantum double of two von Neumann algebraic quantum groups/\ﬁl and/\ﬁg
which are comonoidally W*-Morita equivalent with respectively My and M.
Moreover, there is then a one-to-one correspondence between the P-M -bi-
Galois objects and pairs of P;-M;-bi-Galois objects.






Chapter 10

Application: Projective
corepresentations

Let & be a locally compact group, and suppose we are given a continuous
map Y of & into the space of *-automorphisms of B() for some Hilbert
space 2, equipped with the point-o-weak topology. Since any such auto-
morphism Y is inner, i.e. of the form

x(z) = uzu®, x € B(J),

for some u € % (B(4€)), the group of unitaries on .7, this means that we
have a Borel covering

{(g;u) | Ad(u) = T(9)} = & x %(B(X))

of &. When everything is separable, we can choose a Borel map v : & —
U (B()) which creates a section of this covering. Then v is not necessarily
a *-representation, but it comes close: there exists a measurable function

Q:6x6 - S,

with S the circle group < C, such that

Vgh = 9(97 h)”gvh

(where we choose the conjugate to have compatibility with later definitions).
This €2, when interpreted as an element of . Z*(8)® Z*(®), will then pre-
cisely be a unitary 2-cocycle for the von Neumann algebraic quantum group
Z*(®). We then call the map g — v, a unitary Q-representation, and

301
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we then call projective unitary representation a unitary {2-representation for

some Q.1 Conversely, any unitary projective representation determines an
action of & on a B(J7).

This shows that there is a very close connection between actions on type I-
factors and 2-cocycles. We now want to study this phenomenon for general
von Neumann algebraic quantum groups. It turns out that in this case, 2-
cocycles have to be replaced with general Galois objects. We then apply our
results to construct a peculiar kind of comonoidal W*-Morita equivalence
between a compact and a non-compact von Neumann algebraic quantum

group.

Note on notation: Since in this section, we will mainly work with the non-
symmetrical notion of a right Galois object, we will again follow the conven-
tion for the associated linking von Neumann algebraic quantum groupoid @
as in section 7.3, that is: we suppress the notation for the representation
Z*(N)
on 9
Z(M)
GNS-representation.

> , while we explicitly write the notation for the standard left

10.1 Projective corepresentations

Definition 10.1.1. Let N be a right Galois object for a von Neumann
algebraic quantum group M. Let F be a Hilbert space. A (unitary) left
N-corepresentation for M is a unitary G € N ® B(J) such that

(Ag ®1)(G) = G13Gas.

If [N] denotes an isomorphism class of right Galois objects for M, we call

(unitary) left [IN]-corepresentation for Ma unitary left N -corepresentation
for some N € [N].

By a (unitary) projective corepresentation for ]\//.7, we mean a left N-corepre-

o~

sentation for M for some right M-Galois object N.

!This deviates somewhat from the commonly accepted definition, in which a projective
representation is a homomorphism & — % (B(#))/S*. We will however make up for this
by choosing an appropriate notion of isomorphism.
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For any right M-Galois object N, there is a regular left N -corepresentation
on the Hilbert space £2(0), given by the unitary I//I\/QZI = (JN®JN)G*(JM®
J5). In case M = £(®) is the group von Neumann algebra of a locally
compact group &, and N is the Q-twisted group von Neumann algebra by
a unitary 2-cocycle Q € £*($) @ L*(®), we then get back the ordinary
notion of an (2-representation. Of course, one can also easily adapt the def-
inition to find the notion of a right /N-corepresentation.

If N is a right Galois object for M, then intertwiners between two IN-
corepresentations Go and Gy on respective Hilbert spaces % and 7] are
those operators x : 7 — 77 for which

Gi(1®z) = (1®x)Gs.

If [N] is an isomorphism class of right M-Galois objects, then intertwiners
between two [IN]-corepresentations Go and G; on respective Hilbert spaces
5 and 77, and with respective associated right Galois objects Ny € [N]
and Nj € [N], are those operators x : J#% — 57 for which there exists an
isomorphism ® : No — N; of right Galois objects such that

(P®)(G)(1Qx) = (1® )G,

where ® : ]Vl — ]% is the dual of ® (the precise definition of which is
easily guessed). Finally, when Gs and G; are two projective representations
with associated isomorphism classes [/N1] and [NV2] of right Galois objects,
we define their set of intertwiners to be {0} if [IN1] # [N2], and the set of
[N]-intertwiners when [Ni] = [N2] = [N].

We then call two N-corepresentations (resp. [N ]-corepresentations or pro-
jective corepresentations) isomorphic when there exists an invertible inter-
twiner between them. We cal an N-corepresentation (resp. [IN]-corepresenta-
tion or projective corepresentation) irreducible if its intertwiners with itself
are just the scalar multiples of the identity.

By the theory developed in the third section of chapter 11 (see page 340), an
N-corepresentation G on a Hilbert space 7 is a special type of corepresenta-
tion on ¢ of the associated linking von Neumann algebraic quantum group-
oid (@, e). To be precise: given such an N-corepresentation, we give .7 the
(non-faithful) C2-C2-bimodule structure with left action a(e;) := d;2 1 B(#)
and right action b(e;) := 051 L (), where {e; | i € {1,2}} denotes the canon-
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ical basis of C2. Then, using the notation of section 11.3,

(L2Q)@H) = (L2(0)dL*(M)@H

c Q@A
and
J(L*Q)@H) = (L*(P)®L*(N)QH
c Z2XQ)e L.

One checks that (71'@ ® 1)(G) defines a corepresentation.

As a result of the proof of Proposition 11.3.7, the second leg of G will have
a C*-algebra as its norm-closure (a fact which can also be proven directly).
This implies in particular that any irreducible projective corepresentation
will automatically be indecomposable.

Theorem 10.1.2. Let M be a von Neumann algebraic quantum group.
Then any (irreducible) projective corepresentation G of M canonically gives
rise to a(n ergodic) left coaction T = Coact(G) of]/\/[\ on a type-I-factor, and
any left coaction Y on a type I-factor canonically gives rise to a left projec-
tive corepresentation G = Corep(Y). Moreover, Coacto Corep is the identity,
and Corep o Coact will send a projective corepresentation to an isomorphic
projective corepresentation.

Proof. The first statement is easy: if G is a projective corepresentation,
define .
YT:B()—>MQB():z— G (1®x)G.

Then this is a coaction by the defining property of G.

Now let % be a Hilbert space, and Y : B(¢) — J/\Z@B(%) a left coaction
of M. Denote by N the relative commutant of Y (B(s)) inside M x B(2).
Then we have a canonical isomorphism ® : M B(s) - N ® B(J),
sending n € N to n® 1 and T(z) to 1 ® x for x € B(J¢). We claim
that the dual (right) coaction T Mx B(s) — (]\7 x B(J)) ® M re-
stricts to a coaction any of M on N. Indeed: choose an orthonormal basis
& of A, with respective matrix unit system {e;;}. Then for x € N, we
have z = >, T(ep1)zY (e1) in the o-strong topology. Applying T, we get
T(z) = D(T(er) ® DY (z)(Y(e1) ® 1), whose first leg clearly commutes
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with T(B(J)).

We now show that (N, ay) is a right M-Galois object. Ergodicity is clear,
since 1y ® B(J) is the algebra of coinvariants for

Ad(D)as(an @) = (PR )T o d L

Also integrability follows easily by this, T being integrable. Since we have
a canonical isomorphism (M x B(J)) x M = (N x M) ® B(s¢), and the
first space is ~ B(#) ® B(Z?(M)), also N x M must be a type I factor,
from which it follows that the Galois homomorphism for NV is necessarily an
isomorphism.

We show that the original coaction is implemented by an N-corepresentation.
Denote by Tr the canonical nsf trace on B(5¢), by Tr the dual weight on
M B() with respect to Tr. Then we have Tr = (pny ® Tr) o ®. Hence
we obtain a unitary

u: LHM) R LHB(AH)) —» L2HN)Q LHB(AH))
such that
Apr(m) @ An(z) — (Ay @A) (@(m @ 1)(1 ® )

for m € A5, and z Hilbert-Schmidt. But identifying L*(B(), Tr) with
H ® A, and observing that u is right B()-linear, we must have that
u =G ®1 for some unitary

G: LXMYQH — LAX(N)QH.

We proceed to show that G is indeed an N-corepresentation implementing
Y. First of all, it is not difficult to see that G € NQB(): for m € A4,,,, and

Pm
x Hilbert-Schmidt, and &, 7 € Z%(M) with £ € 9(5;/[1/2), we have, putting

w=wey, and ws = w(;;{l/z - and denoting by U the unitary implementation
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of ap,

((L®w)(VM)®1)(AM(m)®ATr( )
u(Ap((enr @ ws)(Apr(m))) @ Ay (z))
AN @ A ) (P(((err @ ws)(An(m))) @

)

)@ (1®))
AN @A) (P((((err @ ws)(Ap(m

) m))) @ 1)Y(x)))

AN @ At )(@((t57, gy @ ws) (T (M @ 1)Y(2)))))

AN @A) ((env @ ws ® L)) (N @ Lpr)) (M@ 1) Y (2)))
(Lew)U)®1)(Ay @ An)(2((m®1)Y(2)))

) ® Du(Ap(m) ® Are(z)),

o~ e~ =~

(t@w)(U

so that G((L@w) (Vi) ®1) = ((L@w)(U)®1)G, which is sufficient to conclude
that the first leg of G is in V.

Also, it is easy to see that G implements T: since u(ty; ®@ Tpw))(Y(z)) =
(1 ®@mp(w)(z))u on LM @ L%B(s)), we have GY(x) = (1 ® x)G on
LM ® H.

So the only thing left to show, is that G satisfies
(A12 ®0)(G) = G13Goas.

Writing out Alg and tensoring by 157 to the right, this translates into
proving that G12U23(W Ji2 = U13UQ3, Wlth G the Galois unitary for N.
Moving G to the other side, and multiplying to the left with 315, this be-
comes uiz(War)ihXi2 = Y19G1ouiguss. This identity can then again be
proven using a simple matrix algebra argument: we can write ®(m ® 1) =
Zz‘,j @ij(m) ® e;5 with <I>ij(m) = Zk (exi))(m® )Y (e]k) € N, where the
sums are in the o-strong topology. Then for m,n € .4, and z Hilbert-
Schmidt, we make the following calculation: on the one hand,

u13Wi5E12(Ap(m) @ Apr(n) @ Arv(x))
= u(Ay @Ay @A) (Ap(m)(n®1) @ x)
= (Av®Ay @A) (2 ®)(Ay(m)(n® 1) ®ejjz)),

1,J
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while on the other hand,

Y12G2u1zuz (A (m) ® Ay (n) ® Ay ()
= Y1Grouz(Ay @ Ay ® ATr)(Z m® ®;;(n) @ ej;x)
,J
= YG1(AN®AN® ATr)(Z (®ri(m) ® Pi5(n) ® erjz))
©,0,T
= (Av®AM @A) (an(®ri(m)) @ 1)(Ri5(n) @ 1 @ e,j)))
07,7
= (AN®AM® ATr)(Z (@ ® 1) (Apr(m)) @1)(P45(n) @1 R erjx))
04,7
= (Av®Ay @A) (B ® 1) (A (m)(n®1)) @erjz)),
7,r
where we have used »};, ®,;(m)®;;(n) = ®,;(mn) for m,n € M in the last
step. So we are done.

Now suppose we are given an Ni-corepresentation Gi. Let Go be the pro-
jective corepresentation (Corep o Coact)(Gy), with associated right Galois
object No. Then since G; and Gs implement the same coaction on B(5),
we must have GG = v ® 1 for some unitary v : Z?(Ny) — ZL%(Ny).
Since v is a right M-module map, we can extend the (well-defined) map
@2712 — @1712 : z = vz to an isomorphism W of the linking von Neumann
algebras @2 and @1. From the fact that G; and G are projective corepre-
sentations, it is easy to deduce that

Ap12(v2) = (V@ V) Ag 19(2)

for z € @2712. Hence ¥ is an isomorphism of linking von Neumann algebraic
quantum groupoids, keeping the right lower corner fixed. Thus N; and N»
are isomorphic by a map ¥, and moreover (¥ ® ¢)(G2) = Gy.

Finally, it is trivial to see that under this correspondence, irreducible pro-
jective corepresentations correspond to ergodic coactions.

O
The following is also a generalization of a classical result.

Theorem 10.1.3. Suppose M is a von Neumann algebraic quantum group
for which M has a separable predual, and let 7 be a separable infinite-
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dimensional Hilbert space. Then there is a matural one-to-one correspon-
dence between outer equivalence classes of coactions of M on B(J), and
isomorphism classes of right Galois objects (with separable predual) for M.

Proof. First suppose that T1 and T are two coactions of M on B(s¥)
which are outer equivalent by a unitary v € M ® B(s¢). Then we get an
isomorphism

®: M x B(%)—)]T/I\lx B(H) : z — vzv¥,
T1 T2

which obviously sends Y1 (B(5)) to Yo(B(H)) (see the proof of Proposi-
tion 4.2 of [85]). Hence if IV; denotes the right M-Galois object constructed
from Y; as in the previous Theorem, N; is sent to Ny by ®. But & also
preserves the dual right coaction, since (Vis)i13vi2 = vi2(Var)iz. So PN,
gives an M-equivariant isomorphism from N to No.

Conversely, suppose that N is a right M-Galois object, and that T; and
Y, are two left coactions of M on B (), which are induced by respective
N-corepresentations Gy and G. Put v = G5G; € M@ B(). Then v is an
T1-cocycle:

(A ®)(v) = G593G513G1,13G1,23
V2307 93v1391,23
v23(t ® T1)(v),

and obviously Yo (z) = v (x)v* for z € B(). Hence T1 and Y5 are outer
equivalent.

Now for any right Galois object N with separable predual, there exists a
coaction on B(J) which has NV as its associated Galois object: for example,
one can take # =~ £%(0) ® # and equip it with the coaction

T:B(L20)@ #) > M®.L2(0)Q A

T(z) = (W3)* (1 @) W3,

i.e., take an amplification of the coaction coming from the regular left pro-
jective corepresentation of a right Galois object. This observation then ends
the proof of the proposition. O
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10.2 Projective representations

We now introduce the concept dual to that of a projective corepresentation.
We will use the notations of section 7.6.

Definition 10.2.1. Let M be a von Neumann algebraic quantum group, and
N a right M-Galois object. A continuous left N-representation of M is a
non-degenerate *-representation of C* on some Hilbert space. A continuous
projective left representation of M is a continuous left N -representation for
some right M -Galois object N .

We show in the following proposition that the notions of projective corep-
resentation and projective representation are dual to each other, and how
certain properties are transported along this duality. We first introduce a
definition.

Definition 10.2.2. Let N be a right Galois object for a von Neumann
algebraic quantum group M. We call an N-corepresentation G on a Hilbert
space F€ square integrable if the associated left coaction

YT:B(#) > MQB(H): x— G*(1Q2)G
of]\/j 1s integrable.
Proposition 10.2.3. Let N be a right Galois object for M.

1. There is a one-to-one correspondence between (irreducible) right N -
corepresentations and (irreducible) continuous left N -representations.

2. There is a one-to-one correspondence between (irreducible) square in-
tegrable N -corepresentations and (irreducible) unital normal *- repre-
sentations of O.

Proof. The first statement is immediate by the remarks before Theorem
10.1.2 and Proposition 11.3.8. It is moreover clear that under this duality,
irreducibility is preserved.

Now suppose that G is a square integrable N-corepresentation on HC. Let T
be the associated left coaction of M on B(J¢), and put Ty = (¢ 7@tp(x)) Y-

Denote by g the *-representation of .2} (Kf ) on JZ associated to G, and
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denote by Ag the *-representation of g*l(ﬁ) on £2(0) (so Ag(w) = (w®
L)(I//I\/Ql)). Take {,n € S, and x € Ap,. Then with w = wg z+,, we have

YL @w)(9)* (1 @w)(9)) < |we.y

|- V(¢ @ Jwe ) (GF (1 ® 27 2)G)),

which is finite. Hence (1t ® w)(G) € Ji{l,@. Now one can compute that if
yE Nnﬂ{p@, and o' € ZL(N) is such that Ro(Ag(w') € g, then w'(y) =

<f12(y), JoAN(Rg(Ag(w')))) (for example, it follows purely from the defin-
ing equality of Theorem 3.10.(v) of [30], using various °P-identifications).
Taking such an w', and also an arbitrary w” € (IV),, we see that Rg(Ag(w'-
w")) € Ny, and, with w as before,
w(mg (W) - mg(w"))
= (W ") ®w)(9)
= T2((t®w)(9), JoAn(Ro(Ag (W' - w")))

= {(Jo(Ro(\g (")) * Q)T 12(( ®w)(9)), JoAn (Ro(Ag (w)))

So the functional w(mg(w’) - 7rg/\]%1( -)) can be extended from a functional

on \ ﬁ(f,,}(]/\\f )) to a normal functional on O. Now linear combinations of
functionals of the form w(wg(w’) -) have norm-dense linear span in B(J#)s,,
where the fact that there are enough elements of the form w’ can be proven
similarly as e.g. in Lemma 4.2 of [54]. Hence we can extend mg o )\]_\71 from

A N(éf*l(](f )) to a normal representation of O.

As for the other direction, suppose 7 is a *-representation of ,,Z”*I(JV ) on a
Hilbert space s, which extends to a normal representation of O. Choose
§ € . Then we¢ o m extends to a normal state on O. Hence there exists
n € £%(0) such that 7(x)¢ — zn gives a well-defined left O-linear isometry
m(0)¢ — £?(0). Denote by p the range projection; then p € O'. Since
the regular left N-corepresentation 171\/221 is square integrable (the associated
coaction of M being a dual coaction), we get that if y € B(£?(0))" is
integrable for the associated coaction, then also pyp is integrable. So if G
is the N-corepresentation associated to m, then, since (1 ® W)(WfQ) = g,
the restriction of the representation 7 to the closure of w(INV)¢ is square

integrable. Since £ was arbitrary, 7 itself will be square integrable.
O

Remark: The connection between the square integrability of a(n ordinary)
unitary representation of a locally compact group and the integrability of
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its associated action seems first to have been noted in [68].

10.3 A counter-intuitive example

In this section, we show two suprising results. First of all, we show that
there exist infinite-dimensional irreducible projective corepresentations for
certain compact quantum groups, which is impossible for classical compact
groups. Secondly, using this result, we show that the property of being dis-
crete is not preserved by monoidal W*-co-Morita equivalence (which is to
be contrasted with Theorem 3.8.2). We can even establish this equivalence
by a cleft bi-Galois object. Stating this result in the dual way, this shows
that one can construct a compact quantum group and a unitary 2-cocycle,
in such a way that the cocycle twisted von Neumann algebraic quantum
group is no longer compact. Also note that then necessarily the reduced
C*-algebras underlying these quantum groups can not be the same, as one
is unital and the other is not.

Proposition 10.3.1. Let N be a bi-Galois object between von Neumann
algebraic quantum groups M and P. If M is discrete, then N is a von
Neumann algebraic direct sum of type I-factors. If moreover P is discrete,
then the summands are finite-dimensional.

Proof. The first assertion is easy: if M is discrete, then N, being the fixed

point algebra of the dual right coaction an by the compact quantum group

M, must be of the above form by Lemma 5.6.5, since £ := (¢t ® 057)aN

is a normal conditional expectation N x M =~ B(Z?(N)) — N. We also
«

N

note for further use that pn o &y, = Tr(-Vy), Vn the modular operator
for ¢, since by Proposition 5.7 of [85], we know that &, is also the opera-
tor valued weight obtained by applying the tower construction for operator
valued weights to

C=N* € NS N x M = B(Z?*N)).

PN aN

(See also the remark after Proposition 6.4.9.)

Now suppose also P is discrete. By Proposition 11.1.1, we know that

2it it —it —it
VA = 6-(J50805)00" (Jadg " Tq)-

—it
Q
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In particular,

VA = oy (0570, (0 Tip)ON" (INON" TN,
and thus

Vi = (837) IOy TN (10.1)

since M and P are compact.

Let p be a minimal central projection in N. Then, since pN is a type I
factor, we have a natural identification

pN @ pN' — B(p,i”z(N)) T QY — zy.

Under this identification, Tr(-pV ) corresponds to the nsf weight

Tr (- poy/?

) ® Te(-pIxdy )

by the formula (10.1), the traces being the canonical ones. On the other
hand, if we write o (-p) = Tr(-A) for some positive AnpN, then it fol-
lows easily from Lemma 5.7.10 that A~! is a trace class operator, and that
Eay (1Y) = Tr(Cn(y) A1) for x € pN and y € pN'. Now since Tr(-pVy)
also corresponds to the weight Tr(-pA)@Tr(-pJyA~1Jyx) on pN @pN’, we
conclude that pJ N(S]lfJ ~ is a multiple of JyA~'Jy, and that, in particular,

1/2 .
) ]\{ is a trace class operator.

By looking at the inverse bi-Galois object, we conclude that also 510/ 2 =

J ]\75;,1/ 2‘]67 and hence 5;,1/ 2, is a trace class operator. Clearly, this is only
possible if § y only has finitely many eigenvalues occurring with finitely many
multiplicities. Hence pN is finite-dimensional.

O

Corollary 10.3.2. Let N be a bi-Galois object between von Neumann alge-
braic quantum groups M and P. If M is of discrete Kac type, then P is of
discrete Kac type.

Proof. This is a direct consequence of the proof of the previous proposition,
for in this case we can take oy = 1, since aN(5§f,) = 5% ®5§\Z and dy; = 1 by
assumption. So ¢n = ¥y, and hence, recalling again Proposition 5.7 of [85],
also T, = &4y, where T, is the nsf operator valued weight obtained by
integrating out the dual coaction Jy. But then 5 = (T,YN)‘ p is bounded.
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Hence P is a compact quantum group, and P discrete. Since VN(é};\t,) =
5}?@ ®5%, we must have dp = 1, so P is of Kac type.
O

Remark: Note that for compact quantum groups, it is very well possible
that a non-Kac type quantum group gets reflected in a Kac type quantum
group: consider the monoidal W*-co-Morita-equivalence between the Kac
type quantum group A,(n) (with n > 3) and the non-Kac type quantum
group SU_,(2) with ¢ €]0, 1] such that ¢ + 1/¢ = n (see [10]).

Corollary 10.3.3. Let N be a right Galois object for a discrete quantum
group M. Choose a representative (J4,G;) from each equivalence class of
irreducible N -corepresentations. Then O = @;B(J%), and we can choose
the isomorphism such that ng ~ @;G;. Moreover, C* = C = @;By(J4),
where C' is the associated reduced and C* the associated universal C*-algebra

of O.

Proof. Since now any N-corepresentation is square integrable, Proposition
10.2.3 implies that each one comes from a normal representation of O. So
the corollary follows immediately from the fact that (1 ® p)Wa; is an irre-
ducible N-corepresentation for any minimal central projection p of O.

As for the second part: C* will be equal to C' since any representation for
it factors through C. Now suppose 7 is a *-representation of

___c
S Cn®iBo(H)"
mce

C _ C+@;By()

Cn@®iBy(s) ~ @Bo(H)
this means we also have a *-representation of C'+®; By(.74;) which disappears
on @;By(). But the restriction of this representation to C extends to a

normal representation of O, in which @;By(7%) is o-weakly dense. Hence
this representation has be zero on O, and so m = 0.

Hence C' € @;By(.#4). We now show equality. Since we know already that
C consists of compact operators, we can choose a maximal family e;; of
orthogonal minimal projections in C, such that }, e;; converges strictly to
1c. If some ej; were not a rank 1 projection, then we can find a non-zero
projection f € @;By(#4) which is strictly smaller than e;;. But then f can
not be o-weakly approximated by elements of C', which gives a contradic-
tion. Hence all ej; are rank 1. Now we also have that each p;C is simple:
any *-representation extends to a normal representation of B(.7%), hence is
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faithful. Hence if e;; are a system of matrix units in @;Bo(.74;) with respect
to the e;;, also each e;; € e;;Ce;; € C. This shows that C' = @;By(J4).
O

Combining Theorem 10.1.2, Proposition 10.3.1, Corollary 10.3.3 and Corol-
lary 9.1.9, we obtain the following Theorem.

Propositi/gn 10.3.4. Let M be a compact von Neumann algebraic quantum
group. If M admits an ergodic left coaction on an infinite-dimensional type
I-factor, then there exists a von Neumann algebraic quantum group P which
is not compact but comonoidally W*-Morita equivalent with M. If moreover
the underlying von Neumann algebra of M is properly infinite, then we can
take M = P as von Newmann algebras.

Note that by Proposition 7.6.2, the coaction ap of the associated right
Galois object N will be continuous, but by Theorem 3.8.2, it can not be al-
gebraic, i.e., there is no natural dense *-algebra of N on which ay restricts
to an algebraic Galois coaction.

We now present a concrete example of a compact quantum group, with its
underlying von Neumann algebra properly infinite, and admitting an ergodic
coaction on an infinite-dimensional type I-factor. (I would like to thank Ste-
faan Vaes for help on this part.)

Let g, be a sequence of numbers 0 < ¢, < 1. Let F), = 0 12 gn
—qn

Let A, be the Hopf *-algebra underlying SU,, (2). We recall that A, is

generated (as an algebra) by four elements w, ;j, with *-structure uniquely

determined by U, := F;'U,F,, where (Un)ij = un,ij and (Uy)ij; = u:;,ij,

and with further defining relations UU,, = Io = U,U}}. Let A = oa?OAn be
n=

the free product *-algebra of all A,. Then A has a unital comultiplication

Ag:A— OfO(An ® An) € A® A. Together with this comultiplication, A

n=

becomes a Hopf-*-algebra, the counit €4 being the free product of the €4,
and the antipode S being the free product of the S4,. Moreover, it has an
invariant functional ¢4, namely the free product functional of all v4,. So
A is a *-algebraic quantum group of compact type. (We refer to [102] for
details about this construction (which is made there in a slightly different
way ), notably Corollary 3.7 and Theorem 3.8.)
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We now construct a particular coaction for A. Let B,, = O}_,M>(C), and let
B be the (algebraic) inductive limit by the natural inlusions B,, =~ B, ®1 <
By +1. Interpreting U, as an element of M>(C)©A,, S M2(C)OA, it becomes
a unitary corepresentation of A. Denote then by U, € B, ® A the tensor
product corepresentation of the first n + 1 corepresentations U (that is,
UoUlUn) Then

ap:B—>B@OA:z€ B, > U, (x@ 1)U}

is easily seen to be a well-defined coaction of A on B.

. . _ 1 ®
We now construct an apg-invariant state wg on B. Let ¢, = 7TT(F;{‘Fn)F" F,,

with F}, as above. We remark that c, then has 1?512 as its smallest eigenvalue.
Let wy, be the state Tr(cy-) on My(C). Then it is well-known (and easy to

calculate) that w, will be invariant for the coaction

an : Ma(C) = Ma(C)O Ay iz > Up(z @ 1)U,

Now put
wB:BHC:xEBnH((%wk)(a:).
k=0
Then wg is indeed ap-invariant, and moreover, gives a positive, unital map
on B. We further remark that (¢t ® pa)ap = wp, which easily follows from
wn = (L®a, )y, and the way in which a free product functional has to be

evaluated in products.

Let (£%(B,w), Ay, m,) be the GNS construction of B with respect to w, and
put Y = 7,(B)"”. Put wy the extension of wp to a normal state on Y. Let
M be the von Neumann algebraic quantum group associated to A. Since

U Au(B) ©A(A) = Au(B) O A (A)
Au(b) ©Agp(a) = (Ao © Agp)(as(D)(1 ®a))

is a unitary map by the ap-invariance of w, we can extend U to a unitary
U: L%B,w)®.22(M) > £%(B) ® L*(A).

Since U(b®1)U* = ap(b) for b e B, it is clear that we can define a coaction
Ty on Y by putting

Ty :Y 5>Y®M:z— Ulx®1)U*
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Since (1 ® pa)ap = wp, we also have (1 @ ;) Ty = wy. It follows that Ty
is necessarily an ergodic coaction.

To end, we choose the ¢, in such a way that Misa type I11 factor, and
Y a type I factor. Choose g9 = ¢t = 1. Then M will be an infinite
factor by Barnetts Theorem ([7], Theorem 2), since M is isomorphic to
(Z*[0,1], p) = ((£*[0,1], u) = (M3, 11")) for some von Neumann algebra Ms
and non-tracial faithful state x4’ on it, with g the ordinary Lebesgue mea-
sure. On the other hand, let the g, go exponentially fast to zero at infinity.
Then, by the remark concerning the eigenvalues of the w,, we will have Y
will be an infinite type I factor, by the convergence rate of the ¢, (see e.g.
Lemma 2.14 of [3]). Hence we are done.

Remark: The compact quantum group used in the preceding example is
rather big. For example, it is not a compact matriz quantum group, since
the underlying C*-algebra is not finitely generated. It would therefore be
interesting to see if one can also produce an example where a compact matrix
quantum group (which are to be seen as compact quantum Lie groups) gets
deformed into a non-compact one by twisting.



Chapter 11

Measured quantum
groupoids on a finite basis

In this chapter, we study a special class of measured quantum groupoids
(cf. [59]), namely those which have a finite-dimensional basis (i.e. with a
finite underlying ‘quantum set of objects’). Although we will only need the
results in the special case where the base algebra is C?, it seemed pointless
not to develop the theory in somewhat more generality. Although we have
decided only to treat the case where the given weight on the base algebra is a
trace, all results also hold true in the general case, with minor modifications.
We will then develop an alternative definition for these measured quantum
groupoids (in terms of so-called weak Hopf-von Neumann algebras), and
consider their naturally associated C*-algebraic structures.

Remark: the notation used here is adapted to the one of [30]. Therefore,
there will be some overlap with symbols used in a different context at other
places. This should not lead to any confusion, as this chapter is fairly inde-
pendent of the preceding ones.

11.1 Weak Hopf-von Neumann algebras

Let (L,Q,d, f,T',T,T',v) be a measured quantum groupoid in the sense of
Definition 3.7 of [30]. This means the following:

1. L,Q are von Neumann algebras,

2. d is a faithful normal unital *-homomorphism L — @,

317
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w

. f is a faithful normal unital *-anti-homomorphism L — Q,

4. T'is a faithful normal unital *-homomorphism @ — @ r*4 @,
L

5. T is an nsf operator valued weight Q* — (d(L))™t,
6. T’ an nsf operator valued weight Q* — (f(L))"®* and finally
7. v is an nsf weight on L.

These have to satisfy the following conditions:

1. The range of d commutes elementwise with the range of f: d(z)f(y) =
fly)d(z) for all z,y € L,

2. T(d(z)) = d(z) 1®a 1,
L
3. T'(f(x)) = 1®a [(2),
L

4. (T pxqge)ol = (v g#q ) o T,

L L
5. (L prqg T)I(z) = T(z) yQ®q 1 for x € M},

L L
6. (T" pxq ) (z) =1 j®q T"(z) for x € M7,

L

L

7. With ¢ = vod 'oT and ¢ = vo f1oT’, the modular automorphisms
of and ¢! commute for all s,t € R.

Note that the second and third condition make sense by the first one, which
also endows @ f*q Q with natural (anti-)embeddings of L. Then the fourth
L

condition makes sense by the second and third. Also note that the fifth
and sixth condition are equivalent with (v fx4 ¢)(I'(2)) = T(z) for z € A,
L

resp. (¢ pxq¢)(D(z)) = T'(x) for x € A, (see Definition 3.5 of [30]).
L

When v is an nsf weight satisfying the final condition above, it is called rel-
atively invariant w.r.t. T and T" (Definition 3.7 of [30]). In [58], the first ar-
ticle concerning measured quantum groupoids, another definition was given:
the only difference is that there v has to be quasi-invariant with respect
to T and T’: this means that one should have of (f(z)) = f(¢”,(z)) and

ol (d(z)) = d(o¥ (z)) for z € L. In general, this makes this second notion of a
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measured quantum groupoid (which is now also called an adapted measured
quantum groupoid) stronger than the first notion, as proven in [59] and the
appendix of [30]. However, in the weaker theory, one can obtain a unitary
antipode R : @ — @ (cf. Theorem 3.8.(i) of [30]), which will be a coinvolu-
tion in the sense of Definition 3.3 of [58]. Then if we replace T" by RoT o R,
it will still satisfy the weak definition, and it will already satisfy the strong
definition (i.e. be adapted) if we know only that o} (f(x)) = f(c¥(x)) for
x € L (see Remark 4.3 of [58]).

The theory of measured quantum groupoids can then be developed parallel
to the theory of von Neumann algebraic quantum groups. In particular, one
has an antipode and a modular element, while the scaling constant is now
replaced by a scaling operator. One also has a well-behaving duality theory.
We refer to the preliminary sections of [30] for an overview of the precise
results.

At some point, we needed the following relation between the structural op-
erators of a measured quantum groupoid (compare [90]).

Proposition 11.1.1. Let (L, Q,d, f,T',T,T',v) be a measured quantum group-
oid, with T' = RoT o R. Then
Vig = (552#(J@(S%J@)ééit(JQ(SéitJQ).

Proof. The proof is completely the same as in Proposition 3.4 of [90], using
the commutation relations in Theorem 3.10 of [30] and biduality. O

We will from now on be interested in those measured quantum groupoids
(L,Q,d, f,T,T,T',v) for which L is finite-dimensional, and we will assume
this is satisfied for the rest of this chapter. Then if we have a measured quan-
tum groupoid, it follows from Theorem 3.8 of [30] that there exists a one-
parametergroup -y; of automorphisms on L such that of (f(z)) = f(1:(z))
for x € L. It is easy to see that any such one-parametergroup must be of the
form o€, for some faithful positive functional €. So if we choose € instead of
v, then we will have an adapted measured quantum groupoid. Moreover, it
follows from Proposition 5.41 in [58] that in our case, we can always choose
T in such a way that the above one-parametergroup = is trivial, so that we
can take for e an arbitrary faithful positive trace.! Note that the antipode

Tt would also be possible to continue working with arbitrary faithful positive e, making
the necessary adaptations here and there, but we have restricted ourselves to this (slightly
simpler) case.
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S, being defined with the aid of T" and €, may change by these alterations.
This is not so bad, if we only consider (L, @, d, f,T') (which could be called
a measurable quantum groupoid): this could be seen as the von Neumann
algebraic counterpart of either Hopf algebroids in the sense of [60] (whose
antipode depends on some non-canonical section of a fibre product into an
ordinary tensor product), the slightly more general Hopf algebroids proposed
in [13] (whose antipode is indeed not unique), or of the still more general
x gp-Hopf algebras ([75]), which even do not carry an antipode. We will give
a little further discussion concerning this point a bit later on. (Compare
also the discussion at the end of section 1.2.1.)

Since L is a now a finite-dimensional C*-algebra, we can write
L =@My, (C).

We will from now on further assume that € = @lenl - Tr, where Tr denotes
the non-normalized trace (so the trace of a minimal projection is 1), i.e., € is
the non-normalized Markov trace on L. Put 2# = £?(Q). Then it follows
from a straightforward computation that the map

V:HQH - H QeI RN — € fQan

is a coisometry (where it is easy to see that any £ € J is left and right
bounded). It also follows readily that we have an isomorphism

szd Q- plQR®Q)p: z— v'av,

where p = v*v € Q ® Q. Denote by A the (non-unital) *-homomorphism
A:Q—->QRQ:x— v'T(x)v.

Then the coassociativity of I" gives us the coassociativity of A, once we
realize that (w yxq ¢)I'(x) is well-defined and equal to (w ® ¢)A(z) for all

€
x € Q and w € Q4, by definition of the slice map (and similarly on the other
side). We note then that

A(d(z)) = (d(z) @ DA(1) = A(1)(d(z) ® 1)

and

A(f (@) = 1@ f(2)A1) = A)(A @ f(x))
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for x € L, since v is an L-L-bimodule map (for the obvious L-L-bimodule
structure in terms of d and f).

We can also look at the natural map

U3<%ﬂ®%_’%d®f%a

~

where f(z) = Jod(x)*Jg. This will again be a coisometry.

Denote by # the regular pseudo-multiplicative unitary for the measured
quantum groupoid (L, @, d, f,I',T,T",€): it is the unitary map 7 ;®q.# —
€

I 4® f‘%ﬂ which is determined by

€°P

(lg,e)* W lg’ﬁopAgp(«T) _ Aw((wﬁm F*d L)F(j;)), &, ne I, x € J’{p,
N

where lg’eop for example is the operator

H = H i@ (= Ea®5(
€°P €°P
(see Theorem 3.10.(ii) of [30]). Denote W = v*# u. Then by Theorem 3.6
of [30], we can conclude that W*(1 ® y)W = A(y) for y € Q. By the stated
defining property of #, we see that we can define W* directly as the map

HRQH — H R : N (1)@ (y) = (Ap®A)(A(y)(2@1)),  z,y € A,

just as in the case of von Neumann algebraic quantum groups. We call the
map W the left regular multiplicative partial isometry associated with the
measured quantum groupoid.

Remark: An abstract theory of multiplicative partial isometries (in the
finite-dimensional setting) was developed in [12] (see also [91]). We show
further on that the defining properties of such m.p.i. are also satisfied for

our W.

If we apply similar constructions to the dual @ of @ (see Theorem 3.10
of [30]), we obtain a partial isometry W. By that same theorem, we find

—~

that W = YW*X. Denoting then by A the corresponding comultiplication
Q> Q®Q, we get
WAW = A1) = > ny tf(ef) @d(ely),

i7j7l



322 Chapter 11. Measured quantum groupoids on a finite basis

WW* = A%(1) = > n, Ld(el) @ f(ehy).
.5,

We further denote p=¢codlo T and w = co f Lo where 7' and
= RoT o R are the dual operator valued weights on Q, as 1ntr0duced in
Theorem 3.10 of [30].

We state the commutation relations between W, d and f.

Lemma 11.1.2. If x € L, then

W(d(z)®1) = (1@d(z))W,

W1 f(z)) =(1® f(x)W,

W@ el = (f@)enw,

4 WA f@) = (fx) @ HW.
Proof. These formulas follow straightforwardly by the identities in Definition
3.2.(i) and Theorem 3.6.(ii) of [30]. 0

We state separately the commutation relations between A(1), A°P(1) and
W

Lemma 11.1.3. 1. Wi3(1® A%(1)) = (A(1) ® 1)Whs,
2. (1@ A%(1))Wiy = WiaA%(1)y3,
3. A(1)13Was = Was(A(1) @ 1),
4. (1@ AQ)Wia = Win(1® A(1)).

Proof. This follows by the previous lemma and the concrete form of A(1)
and AOP( ) in terms of d, f and 7. O

The following lemma gives some more commutation relations.
Lemma 11.1.4. For x € L, we have

L W(f(x)®1) =W ®d(z)) ,

2. (1@ f(e)W = (d(x) @ YW

5. AM)(f@) ®1) = A)(1 @ d(x)).
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Proof. Choose {,n€ s and x € L. Then

o(f(x)@D(E®n) = (f(@)E) 1®an
= £ ®q (d(z)n)
= v(1®d(z))({®n),

so applying v* to the left, we get A(1)(f(z) ®1) = A(1)(1 ® d(x)). Mul-
tiplying to the left with W, we get the first relation. Considering the first
relation for the dual, and using that W = XW*X, we arrive at the second
relation.

O]

For multiplicative partial isometries, several (non-equivalent!) pentagon
equations hold.

Lemma 11.1.5. The operator W belongs to Q ® Q, with {t@W)(W) |we
B(H)+} o-weakly dense in Q, and {(w @ 1)(W) | w € B(J)}x o-weakly
dense in Q. Moreover, the following equations hold:

1. W12W13W23 = W23W12;
2. Wi,WosWia = WigWas,
3. W23W12W2*3 = W12 Wis.

Proof. The first statements follow straightforwardly by the corresponding
results for # in Theorem 3.6 and Theorem 3.10 of [30].

Now note that for any faithful positive wi,ws € L, = L*, there exist ¢1,co €
R{ with cjwy < wa < cows. So the space Q‘i’f appearing in Theorem 3.10.(ii)
of [30] is just Q. itself. Now choose wi,ws € Q4. Then, using the notation
and results of that same Theorem 3.10.(ii), we get

(W @w@)(A®)YW)) = (w1 fraws) o) @) (W)

= (w1 Quwa ®1)(Wi3Wa3),

and hence (A ®¢)(W) = Wi3Was. Then because W implements the comul-
tiplication, we get the second identity of the statement. The third identity
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follows by a similar reasoning for the dual.

Finally, we have

WasWia = Was(1®@A(1))Wia
WasWia(1® A1)
= WasWiaW53Woas
= WiaWi3Was,

where we used the fourth identity of Lemma 11.1.3 in the second step, and
the third identity of this lemma in the last step. O

We now want to give a description of measured quantum groupoids which
avoids the use of fibre products. We warn however that this new description
is not very elegant, and that we do not really know how to see it as a specific
case of a more general theory of ‘weak Hopf-von Neumann algebras (with
integrals)’.

Definition 11.1.6. Let L = @_, M,,(C) be a finite-dimensional C*-algebra,
Q@ a von Neumann algebra, and d (resp. f) a faithful unital *-homomorphism
(resp. anti-*-homomorphism) from L into Q. Let A : Q - Q®Q be a (not
necessarily unital) faithful normal *-homomorphism satisfying the coasso-
ciativity condition. Assume further that f and d have pointwise commuting
ranges, that A(d(z)) = (d(z) ® 1)A(1), that A(f(z)) = (1® f(z))A(1), and
that
A1) =D ny ! Flenyi) ®d(er;).
i,

Then we call (L,Q,d, f,A) a weak Hopf-von Neumann algebra with finite
basis.

The origin for this terminology is to be found in the theory of weak Hopf
C*-algebras, developed in [11] (see also our first chapter). Also, as for Hopf-
von Neumann algebras, the name is not very suitable?, since there is no
notion of antipode around, but the connection with the theory of Hopf-von

’In fact, this definition is adapted to the canonical (non-normalized) Markov
trace on the base space L. Allowing general positive functionals ¢ = @F_,Tr(-F),
where each Fj is an invertible positive matrix, we should only ask that A(1l) =
i Clely_il/QEY_jl/Qf(e;i) ® d(el;), where the el; are matrix units for which F, =
> Fi.el;, and where C; = > Fl_zl This would then have to be the most general
definition for ‘a weak Hopf-von Neumann algebra with finite basis’.
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Neumann algebras is immediate.

It should be clear, by the preceding discussion, that for a weak Hopf-von
Neumann algebra, we have

AMEQ®QA1) =Q e Q,

which is spatially implemented by the unitary

AM)(Z*(Q) ®-2%(Q)) — L%(Q) y®1 L%(Q) :

E®n— & ;®qm,

where € still denotes the non-normalized Markov trace. Then denoting by
I' the map A composed with this isomorphism, we see that (L, Q,d, f,T")
satisfies all requirements of a measured quantum groupoid which do not
mention (operator valued) weights (i.e., is a Hopf bimodule in the sense of
34]).

Definition 11.1.7. Let (L, Q,d, f,A) be a weak Hopf-von Neumann algebra
with finite basis. We say that (L,Q,d, f,A) admits integrals when there
exists an nsf operator-valued weight T' from @ to d(L) and an nsf operator-
valued weight T' from Q to f(L), such that, denoting ¢ = eod ' oT and
v =¢co floT’, we have

P((w®)A(x)) = w(T(x)) for allx e A7, we Qf,
(L @w)A(x)) = w(T'(z)) for all x € .///:,T,,w cQf,

and such that o} (resp. ol ) leave d(L) (resp. f(L)) pointwise invariant.
We then call the septuple (L,Q,d, f,A,T,T") a weak Hopf-von Neumann
algebra with finite basis and integrals.

Then it is easy to see that weak Hopf-von Neumann algebras with finite ba-
sis and integrals correspond precisely to those measured quantum groupoids
with finite basis which are adapted with respect to the (non-normalized)
Markov trace on L. We can hence also speak about the left regular multi-
plicative partial isometry for such a weak Hopf-von Neumann algebra.

Remark: If we would have allowed € to be arbitrary, we would have that the
weak Hopf C*-algebras of [11] correspond precisely to the finite dimensional
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weak Hopf-von Neumann algebras with finite basis and integrals. With e
the canonical Markov trace, we get back the weak Hopf C*-algebra whose
antipode squared restricts to the identity on d(L). Finally, when we also ask
that ¢ = eo T is a trace, we get back the (finite dimensional) generalized
Kac algebras from [106].

It is handy to have a stronger form of left invariance around concerning weak
Hopf-von Neumann algebras with finite basis and integrals.

Lemma 11.1.8. Let (L,Q,d, f,T',T,T") be a weak Hopf-von Neumann al-
gebra with finite basis and integrals. Then for x € QF, we have

T(x) = (L ®p)A(z).

Proof. This follows straightforwardly from Theorem 4.12 of [30].
O

Example 11.1.9. Linking and co-linking von Neumann algebraic quantum
groupoids are weak Hopf-von Neumann algebras with finite basis and inte-
grals.

Proof. Let (@, e, A@) be a linking von Neumann algebraic quantum group-
oid. Define L = C?, and d = f the map

25 Q: (a,b) —>a(1© —e) + be.
The non-normalized Markov trace on L is simply the functional
€:C*—C:(a,b) > a+b.

Let T' (resp. T") be the unique nsf operator valued weight @ — d(L) such
that eod ' oT = s @ @xj (resp. €o floT =13 ® v¥y;)- Then it is
immediate that (032,@,d, 1 A@,T ,T") will be a weak Hopf-von Neumann
algebra with finite basis and integrals.

We also substantiate the claim here, made at page 244, that linking von Neu-
mann algebraic quantum groupoids are precisely those measured quantum
groupoids with base C? and coinciding source and target map with range
outside the center of the measured quantum groupoid. Let

(C27 @a dv da FQ7T> Tl? V)
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be such a measured quantum groupoid. Then we can change v into the func-
tional € from the previous paragraph, without changing the further structure
(since C2 has no non-trivial one-parameter automorphism groups). Thus we
can work with the associated weak Hopf von Neumann algebra with integrals
(CQ,@,d, d, A@,T, T"). Denote e := d(@) The fact that T is an operator

valued weight on d(C?) implies that it is of the form
T(x) = 9013((16} - e)SU(l@ —e)) + pyilexe), e MT,

for certain nsf weights ¢ and @7 on resp. P = (1@ — e)@(lé —e) and
M = eQe, and similarly for 7', giving weights 15 and Y7 on resp. P and
M. Since AQ(M) € M ®M, and similarly for P, it is easily verified that M
and P are von Neumann algebraic quantum groups, the invariant weights
being provided by the constituents of 7' and T”. Proposition 7.4.3 then lets

us conclude that indeed (@, e, A @) is a linking von Neumann algebraic quan-
tum groupoid.

Now let (Q,{pij},Ag) be a co-linking von Neumann algebraic quantum
groupoid. Again take L and e the same as in the first paragraph, but now
define

d:C*— Q: (a,b) — api1 + bpa1 + api2 + bpoo,

F:€* 5 Q:(a,b) > api1 + apa + bpia + bpas.
Define

T:Q" — d([0, +0] x [0, +0]) : ij — wij(xij)(pa + pi2)
and
T': Q" — f([0,+00] x [0, +00]) : 245 — (i) (p1j + p2j)-

The invariance properties of the ¢;; and 1;; then easily give that T" and 7"
satisfy the invariance properties necessary to make (C?, Q,d, f, Ao, T, T") a
weak Hopf-von Neumann algebra with finite basis and integrals.

We now substantiate the claims made on page 246. First, assume given a
measured quantum groupoid (C2, Q,d, f,Tg, T, T’,v) for which d and f have
range in the center 2°(Q) of @ and generate a copy of C*. We can again
suppose that v = €, so that we can work with the associated weak Hopf-
von Neumann algebra with finite basis and integrals (C%, Q,d, f, Ao, T,T").
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Then defining p;; = d(e;) fi (ej), the p;; obviously satisfy the conditions with
respect to Ag as in the definition of a co-linking von Neumann algebraic
quantum groupoid. Then there also exist nsf weights ¢;; and 1);; on Q;; such
that T and 7" take the form as in the previous paragraph. The invariance
properties of pg and 1) then easily give the invariance properties necessary
to make (Q, {pi;}, Ag) a co-linking von Neumann algebraic quantum group-
oid.

Finally, we want to show that co-linking von Neumann algebraic quan-
tum groupoids are precisely the duals of the linking von Neumann alge-
braic quantum groupoids. But this is easy: a measured quantum groupoid
(c2, @, d, f, F@,T, T',v) satisfies f = d and ‘range of d not in the center of
@’ iff its dual (C%,Q,d, f, g, T,T", ¢) satisfies ‘d and f have range in the
center of @ and generate a copy of C*’, which follows immediately from the
way in which the dual is defined.

11.2 Reduced weak Hopf C*-algebras

Let (L,Q,d, f,T',T,T' €) be an adapted measured quantum groupoid with
L finite-dimensional and € the canonical non-normalized Markov trace as in
the previous section. We keep using the same notations. In particular, we
still write 7 = £?(Q), and W denotes the associated left regular multipli-
cative partial isometry.

Denote by D the normclosure of {(t @ w)(W) |w € @*}

Proposition 11.2.1. The Banach space D is a C*-algebra of operators.

Pmof;\ From the third pentagon equation in Lemma 11.1.5, and the fact
that W = XW*X, we get that

(L@w)(W) - (1 @w2)(W) = (1 ® (w1 @w2) AP)(W)

for wy,ws € @*, so that D is a Banach algebra.

To prove that it is closed under the involution *, we use the manageability
property of W. Namely, with P the scaling operator introduced in Theorem

3.8.(vii) of [30], we get for ny,m2 € A and & € (P~ 1/?), & € 2(PY?) that
(WH (& ®m), & ®@m) = (W(P 26 ® Jgn), P26 @ Jom).
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Then if also 7y € 2(P'/?) and 1, € 2(P~'?), we get by the commutation
between W and P* ® P, and between P and Jg, that also

W @m),&®@mn) =W ® JQP71/2772)7 20 JQP1/2771>-

Hence (1@wn, 5 )(W)* = (t1Qw 1, p-1/20, s, p1/2, ) (W), s0 that the closedness
under involution follows from the fact that functionals of the form wy, ,,, have

dense span in Q..
O

By duality, the normclosure D of {(w®)(W) | w e Q4} is a C*-algebra.

Proposition 11.2.2. 1. We have d(L) u f(L) € M(D).

2. W is a multiplier of D & D.

min

3. A restricts to a (non-unital) *-homomorphism D — M (D & D).

4. The closure of the space (D @ 1)A(D) equals (D ® D)A(1), as does
the closure of the space (1 ® D)A(D).

Proof. The first statement follows directly from the commutation relations
in Lemma 11.1.2.

To prove the other assertions, we adapt the proof of the corresponding state-

ment for manageable multiplicative unitaries as it appears in [105]. So to

prove the second statement, we first show that it is enough to prove that W e

M(D ® By(s)). For then of course also W = EW*E € M(By(s¢) ® D),
min

min

which leads to
Wi, WasWiaWis € M(D ® Bo(#) @ D).

This implies
(A1) ®1)Wise M(D ® By(#) ® D)

min min

by the third equality in Lemma 11.1.5. So

(L@W)(A(1)®1)W e M(D ® D)

min
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for any w € B(7),. But using the explicit form of A(1), it is easy to see
that we can choose w such that (: ® w)(A(1)) = 1 (in fact e o d~! will do),
and hence

WeMD ® D).

min

So we prove now that W € M(D ® Bo(2)). We will write W =V,

min
D = Dy and 3 = 9, since we will reuse part of this argument later on

for a different value of V. First note that the manageability of V' needed in
[105] (Definition 1.2) is given by the dual of the manageability formula in
Theorem 3.8.(vii) of [30]):

(®u,V(2Q®y)) = <J@Z @Pl/QU, V*(J@x ®P_1/2y)>

for z,z € 9,u e 2(P?) and y € 2(P~'/?). Then one checks carefully that
Proposition 4.1 of [105] is still valid. Further, as in Propositions 4.2 and 4.3
of [105], we can still conclude that

(1®0:0; ®6;)(ViaWs3)(1@6, ®1) € Dy ® Bo(H),

min

(1®6-0, ®6;)(WssVi2)(1®0, ®1) € Dy ® Bo(H),
min
where u,z,y,z € # and where 0, : C —» 5 : 1 — x, although we can not
conclude the density statements in these propositions! Now note that by the
first identity in Lemma 11.1.3 and by a pentagon equation for V', we have

(106,62 ®63)(1® A(L)Via W) (196, ® 1)
= (1@0.0500)(W5Vi) 1®06,®1)V

for x,y,u,z € .
Denote

K = [(1©0.0; ©05) (W5 Vi) (100, 0 1) | u,z,y, 2 € 7],
where [ -] denotes the normclosure of the linear span. Note that also

K = [(1©6.)(1® 8

Rov(1)(uze)) (VO V(A ® 0, @) |u,z,y,2 € A,
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and since (1® AOp(l))‘/lg = ‘/123013(1)13 by the second identity of Lemma
11.1.3, we have R
K = (Dy ® Bo(#)A(1).
It follows that
(Dv @ Bo(H))V < Dy @ Bo(H).
Now by Theorem 3.10.(v) and 3.11.(iii) of [30], we have that the modular
conjugation JQ for the dual left invariant weight implements the unitary
antipode on @), and that (J@ ® JQ)V(J@ ® Jg) = V*. This implies that D
is globally invariant under the unitary antipode. We then have
(D @ By(A)NV* = (D ® Bo(A))Jg® IV (I ® Jg)

min min

= (Jp®JQ)(D & Bo(A#)V(J5®Jq)
(Jg ®JQ)(D @ Bo(H))(Jg ® Jq)
= D ® BO(%)v

which shows that V e M(D ® By(#)). We then also get that

min

(D ® Bo())V = (D @ Bo(#))A(1)

min min

In

and
(D ® Bo(#)V* = (D @ Bo())AP(1).

min min

We prove the third and fourth statement of the proposition together. Now
denote
K =[(b®1)A(a) | b,a € D].

Then analogously as in Proposition 5.1 of [105], we get that
K=[(®:Quw)(r13W13Wa3) |w e B(H)x,x € D ® By(H)].
By the last result in the foregoing paragraph, we get that also
K=[(t®:®uw)(xi3A(1)13Wa3) |we B(IH)w,x € D ® By(IH)].

As A(1)13Wa3 = Was(A(1) ® 1) by the third identity of Lemma 11.1.3, we
have
K = (D ® D)A(1).

min
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By considering the opposite measured quantum groupoid, we also get that
(1®D)A(D) = (D ® D)A(L).
min
O

Definition 11.2.3. We call the couple (D,A) the weak Hopf C*-algebra
associated to the measured quantum groupoid (L,Q,T,d, f,T,T' €).

We will however say nothing more about its further structure (for example
concerning invariant operator valued weights).

11.3 Universal weak Hopf C*-algebras

Now we look at an associated universal construction. For this section, we
will follow closely the paper [54].

We still have at our disposition an adapted measured quantum groupoid
(L,Q,d, f,T,T,T' ¢) with L finite-dimensional and e the canonical non-
normalized Markov trace as in the first section. We keep writing 57 for
Z2(Q). We will write

LHQ) = {we Qs |30 € Qu: Vae F(S) : () = B(S(x))},

where S denotes the antipode of (L, Q,d, f,I',T,T",¢) (defined in Theorem
3.8.(iv) of [30]), and where W(z) = w(z*) for x € Q,w € Q. When w €
ZHQ), we will denote w* for the closure of x € 2(S) — w(S(x)). Then
ZHQ) becomes a *-algebra if we also define multiplication as wy - wy =
(w1 ®wa2) o A (which will be interior). Note that

A ZHQ) - Qrw— (W )W)

is then a faithful non-degenerate *-representation of £} (Q) (using (A ®
L) (W) = Wi3Was, and Theorem 3.8.(iv) of [30] for the fact that it is *-
preserving). We can make .Z}(Q) into a Banach *-algebra by the norm
| - |+, where ||w|s = max{|w], |w*|} for w € £} Q). Denote by D" the
universal C*-algebraic envelope of this *-algebra, and let (7% A\") be a
faithful, non-degenerate representation for A,,i”*l(Q) such that the normclo-
sure of \*(Z}(Q)) may be identified with D",

The first thing we want to do now, is construct a universal version W* of W
on . @ ", as is done in section 4 of [54]. Reading this section carefully,
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we see that the whole discussion goes through verbatim up to Lemma 4.3.
We restate the main propositions.

First, some notation: if § € B(.5),, then, as in [54], we denote by A\*(6) the
element (: ® 0)(W). For w € Q4 and x € @, we denote w -z = w(z-) and
r-w=w( ).

Proposition 11.3.1. (Proposition 4.1 of [54]) There exists a unique *-
representation p of LHQ) on A Q@ A, such that

w)(&1 ®m), &2 ®@n2) = N (w - X (wey.65))11512)
for allw e LHQ), &1,& € A and my,mp € HV.

Proof. As said, we can simply copy the proof in [54], because everything

that is used, also holds in our setting (the operator V' there being just our

W). Note that we need the fact that W is a multiplier of D @ D for
min

the convergence statement about the net (D, zri ® Tk1) Mer(K) in that

proof. O

Proposition 11.3.2. (Corollary 4.1 of [54]) The set {& € (D*)* | 3y €
Q,Yw e ZHQ) : &(\*(w)) = w(y)} is separating for D*.

Proof. As in [54]. The only thing to note maybe is that also in our setting,
AOTt = (Tt®Tt)OA

with 7 the scaling group of (L,Q.d, f,T',T,T",¢), by Theorem 3.8.(ii) of
[32]. O

Proposition 11.3.3. (Lemma 4.3 in [54]) With sy the universal extension
of A to D" and s, the universal extension of u to D", we have ker sy <
ker s,,.

Proof. First remark that the statement about the space
T ={we Q«|IM > 0 with |w(z*)| < M|Ay(z)| VYze A}

just before the proof of Lemma 4.2 of [54], still holds true in our setting
by Theorem 3.10.(v) of [30], noting that Q% equals Q.. Now choose z in
the Tomita algebra for @, where ¢ is the dual weight on @ as defined in
Theorem 3.10.(v) in [30]. Put £ = Ag(z) and choose n € 2. Then for
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y € A3, we have |wy, ¢(y*)| = [(n, Jéaf/z(z)*JQA@(y)}L so that wy, ¢ € 7 (de-
fined as Z but for the dual @), and hence (wy ¢ ® L)(I//I\/) € N5 by Theorem
3.10.(v) and the biduality Theorem 3.11.(i) of [30]. So A*(wey)* € Aoy,
since A (wey)* = (L @ wy ) (W) = (wye ® ) (W).

Then starting from the second paragraph, we can copy the proof of Lemma
4.3 of [54] (where unfortunately there are some *-signs missing), taking £ = v
and 1 = w. Since also these £, n span a dense subspace of 7, we arrive at the
final conclusion of the proof, because also in our situation Zn .2} (Q) is |- |«
norm dense in %} (Q) (using for example standard smoothing arguments as
in Lemma 4.2 of [54]).

O

The existence of a partial isometry U € M(D ® Bo(H# ® ")) as in Corol-

lary 4.2 of [54] can also still be obtained, but we can no longer say the same
things about its initial and final projection. The final Proposition 4.2 needs
more reworking.

We proceed to fill up the gaps. Consider the maps
RL: 21Q) > £1(Q)w > w- f()
and ~
L] : £,(Q) — £/ (Q):w - w-d(z).
Then these are well-defined by Theorem 3.8.(i) and (ii) of [30], and for
wi,ws € .2HQ), z€ Q and z € L, we have
(@i (LL@))(z) = (w1 @w)(1@d(z
= (W1 ®w)((f(x)®
= ((Rl(w1)) - w2)(2)

by Lemma 11.1.4. Hence m} = (L, R]) is a multiplier for Z}(Q).

It is easily seen that mg,, = my - m,. As for the *-structure, we have for
we ZLHQ), re L and z € 2(5) that

-m)*(2)

x

*

|

S
*
—~
Ry
—~~
Nap
2
&
*

(w
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using Theorem 3.8.(ii) of [30] in the third step, from which we can conclude

that L — M(ZHQ)) : 2 — mi is a unital anti-*-homomorphism (where
M(ZL(Q)) denotes the multiplier algebra for £ (Q)).

Suppose now that (%z, 7,€) is a cyclic *-representation of .2} (Q), and de-
note @ = wge o . Choose x € L with || < 1. Then if y € L and
yy* = 1 — xz*, we have for w e Z}(Q) that

[r(mf-w)l? = G (m))mlw)
= Jj(w*mg;*w)
= o(w*w) - &J(w*(mgj)*ml’jw)
< 7(w)él,

and so we can anti-*-represent L on ,%ZA by a map b such that for z € L and
z € ZHQ), we have g(x)fr(z) = #(ml - z). This means that we can also
anti-*-represent L on 2" by a map f*, such that f“(aj))\“(w) = )\“(mg; W)
for all z € L and w € £} (Q). We should remark that this is compatible

~

with the reduced case: we have f(z)A(w) = A(ml -w) for z € L, w € Z1Q),
by the fourth identity in Definition 3.2 of [30].

In the same way, we can make for each z € L a multiplier m2 = (L%, R?) on

Z1(Q) by
Ly 2HQ) > ZHQ) :w—d@) - w

and

R : 2:(Q) = Z(Q):w— f(2)-w,

and we can make a universal *-representation d“ of L on " such that
d*(z) A (w) = A4(ml - w) for w e ZHQ).

~ ~

We will now also denote A*(d(x)) = d*(z) and \*(f(z)) = f*(z).

Lemma 11.3.4. For w € ZNQ), we have (: @ X*)(A%(1))pu(w) = p(w).
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Proof. Choose w € £XQ), &1,& € S, then
Dt F(eh) (W&,d(eéj)*az))

4,7,

2 ;! (@ ® (V" (we, aget ye,) @ VW)

7]»

= an ﬂ )WL ®uwy, (L)*@)(WBWD)
1.]?

= (WOwe g ®)((1®AP(1) Wi ).

By the third identity in Lemma 11.1.3, and the fact that AOp(l)W =W,
we conclude

Z nflf ]7, (wﬁl,d(e )*52)) = )\(w : )\*(wagQ))

7.]7

Applying A o A1, we find (0 ® A%)(A°P(1))u(w) = p(w) by the defining
property of pu. O

Proposition 11.3.5. There exists a unique element W* € M(D & Bo(7"))
such that \*(w) = (w ® 1)(WY) for we Z2HQ).

Proof. Define ¢ : D — B(s ® ") such that ¢(sx(z)) = s,(z) for all
x € D%, which is possible since ker sy € ker s,. Then

U=(®¢)(W)e MDD ® By(H ®H"))

min

is well-defined (also writing ¢ for the extension to M (lA)), which may be a
non-unital map). Denote by p* the projection of 7 ® " onto the closure
of u(Z (@) (A ® ™), then ¢(1) = p*

~

Now fix z € L and w € .Z(Q). Then we have ¢((w ® t)(W)f(x)) = pu(w -
f(x)), and for &,& € A and ny,1m2 € A, we have
(ulw - f(@)) (62 @m), L2 @ 1m2) = A (w - (f(2) A (wey62)))m, 12)-

But

F@)M (e 6,) = F@)(®we 6)(W))

~

(t@uwe, &) (W f(x)))
= (L@Wf(x)£17£2)(W),
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and so

~ ~

H(w@)W)f(z)) = o((w@)(W))(f(x) ®1).

From this, we conclude

¢(f(x)) = (f(x) @ 1)p*.

On the other hand, ¢(d(x)(w®¢)(W)) = pu(d(x) -w), and for &1, &2 € S and
N, M2 € F, we have

((d(z) -w)(&®@m), & @m2) = A((d(z) - w) - A (we, &), 7m12)
(@) - (W - A (wer.£2))) 05 712)
= (A" (@A (w - A (e 6))m, 12),

so that ¢(d(z)) = (1 ® d“(x))p™.
From this, it follows that

UU* = (1@)(AP(1))
1

and

UU = (1®9¢)(A(1))
1

So if we consider WU, we see that it is still a partial isometry, since
UsWiaWihU = U*AR()U
= U*U.

We can choose ' € B()} such that (o' ® )A°P(1) = 1 (for example
W' =eod™!), and then put

W' =(1@uw @) (WHU).
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Ifoe (ﬁ“)* is such that there exists y € @ with @(A\*(w)) = w(y) for all
we ZHQ), and p € B(A ® H)«, we still have, as in Proposition 4.2 of
[54], that (p®¢)(U) € D" and ©((p®¢)(U)) = p(W(y ® 1)). From this, we
can conclude then that for wy,ws € B(J)4, we have

G(W1®@w2 @) (WipU)) = (w1 ®@w2)(A(1)(y®1))
= (@ ®w)(D n " f(eh)y @d(e})))

~

= Yt e(N wr - feh)wad(el)))
1,7,

= N oW wr) FU () Jwald(el)),
1,30

from which we can deduce that
@ ®®)WHY) = (1@ (w1)) - (L@ X)(AP(1)).
Applying (v’ ®¢) to this last identity, we find that
(W1 ® (W) = A(w1).
It is clear that W% € M(D ® Bo(s#™")) is uniquely determined by this
property. e ]

Proposition 11.3.6. The map W" is a partial isometry with (LAY (A(1))
as its initial projection, and (¢ ® \*)(A°P(1)) as its final projection.

Proof. From (w® @) (W5U) = (1@ A (w)) - (¢t ® AY)(AP(1)) and (w ®
L) (WH) = N4 (w) for all w € ZH(Q), we deduce that

Wil = Wis(1© (0@ ) (A (1))).

For z € L and w € .Z}(Q), we have
W)W [ a) = ANw)f*(x)
= M(w- f(2))
(w@)((flz) @ )W),
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so W*(1® f“(:n)) = (f(z) ® 1)W*". This means that

W51 ® (@ X)(A(1))) = (A1) @ YW,

So

(Wﬁs)*Wf&(1®(L®5\u)(3~0p(12)) o
= (1® (@A) (A1) (W) Wi5(1®@ (t @ \*)(AP(1)))
_ UMW WAT
= ((L®@X")(A(1)))13p%s.

Applying (1t ® w' ® 1) with &’ as before, we get as a first identity that
(W W = (@A) (AML))A® (W ®)(p")).
On the other hand, by Lemma 11.3.4, p* < (1 ® A*)(A°(1)). So also
(W15)* Wispls = (@ X)(A(1)))13p85,

and in particular, p4; commutes with (W4)*Wi4. Applying (:@w ®¢) with
w € B(J), arbitrary, we obtain

(W WH (L (we)®) = (@A) (AL)(1® (W )(®").

Denote by p* the projection onto the closure of {(w ® ¢)(p*)H#" | w €
B()+}. Then p* < (1®p"), and (1@1®@p") still commutes with (W5)* W5
and ((t ® A\*)(A(1)))13. Moreover, we get as a second identity that

(W)W (1@5") = (@ X)AML)(1@F").
Putting the two identities together, we get

(WO = (W)
= (LONM)AM)IBM).

Now we repeat an argument of Proposition 4.2 of [54]: if p* were not equal
to 1, we can find a non-zero n € " such that W*({ ® n) = 0 for all
& € . This implies that (w ® ¢)(W*)p = 0 for all w € B(J ). Since
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(w®1) (W) = \4(w) for w e £HQ), and \* is non-degenerate, we obtain a
contradiction.

So we find that )
(W)W = (L@ A")(A(1)).

Since

(1@ @A) (A(1)13A%P(1)23) = (ng)ij%ﬂ@(L®5\u)(30p(1)))
= ((t®A")A(1))13p%3,

applying (w”" ® 1 ®:) for some w” € Q, with (W’ ®:)(A(1)) = 1 gives us that

P = (L@ AY)A%P(1).

Now we also get that
UU* = AP (1)12(1® (1 @ A*)(AP(1)),
and

WHEUU W12 = Wih(1® (1@ X)(AP(1))) Wi
= (AM@N(@r®N) A% (1))

by the second identity of Lemma 11.1.3. Then by the identities in the
beginning of the proof,

(AL @DWE(WE)* = W1 (@A) (AP(1)))(Wi5)*
= WhHUU*Wis
= (A ® @A) (A®(1)13),

and applying t @ w"” ® ¢ for some w"” € B(J), with (L @w")(A(1)) =1 (for
example eod 1 again), we get W¥(W%)* = (1@ A*)(A°P(1)), which finishes
the proof.

O

We now give a different characterization for corepresentations of our special
adapted measured quantum groupoids, by using partial isometries instead
of unitaries. We will work with left corepresentations rather than the right
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corepresentations of section 5 of [30]. So let & be an L-L-bimodule by a
*_representation a and anti-*-representation b of L.3 Denote

g =Y 07 fleh) ®ale;),

ZA7‘j7l

Then exactly as in the first section of this chapter, 7#;®;¥ can be identified
€oP

with ¢/(# ®%), and H 1®, ¥ with ¢(J ®%) (where we will now surpress

€
the unitaries implementing the isomorphism). A unitary corepresentation

Vi 1QuYG — H Y

€°pP

in the sense of Definition 5.1 of [30] (adapted to the left setting) can thus be
seen now as a partial isometry V in Q ® B(¥¢) with final projection ¢’ and
initial projection q. It satisfies, for all xz € L,

Vid(z)®1) = (1®a(2))V,

~ ~

V(if(@)®1) = (fz) @)V

and

~

VA®bz) = (f(z) @1V,

as well as the identity
(A®:)V = Vi3Vas.

Conversely, any such partial isometry in Q ® B(%¥) satisfying these four re-
lations, and having ¢’ and ¢ as resp. final and initial projection, determines
a unitary corepresentation V by restriction.

It is easy to see that the partial isometry W* satisfies these conditions: on
A, we take the L-L-bimodule structure given by d“ and f* (which are
easily seen to commute by definition). Then the initial and final projections
of W satisfy the right conditions for a corepresentation, by Proposition

$We do not assume that the L-IL-bimodule is faithful, unlike in [30]. This causes no
problems however.
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11.3.6. Further, we also know that W" € Q ® B(.2"), and since for wy,ws €
ZHQ), we have

(W1 ®ws) 0 A) @ )W)

A w1 - wo)
A (w1) A" (we)
(w1 @) (W) (w2 @) (W),

we can also conclude that
(A® (W) = Wi Was.

To end, we have shown in the proof of Proposition 11.3.6 that for z € L, we
have

W1 f'(2) = (f(=) @ W™,

and
Whd(z)®1) = (1Qd"“(z))W"

follows by a similar argument. The final commutation needed, with f(x)
on the left, can be deduced for example by the following argument: using
notation as in the proof of Proposition 11.3.6, it is enough to show that
f(z)®1®1 commutes with WU, since Wj,U = W&(l@(L@X“)(AOp(l))).
But since U = (1 ® ¢)(W), this follows at once from the fact that (]?(:n) ®1)
commutes with W.

There is only one thing we still have to do, before we can draw our final
conclusion. Namely, we have to show that W lives in its expected C*-
algebraic home.

Proposition 11.3.7. We have W" e M(D ® lA)“)

mn

Proof. In fact, take any partially isometric (for convenience sake) right
corepresentation V € B(Y ® ) of (L,Q,d, f,T',T,T' ¢), and denote by
Dy the normclosure of its first leg: Dy = [(t @ w)(V) | w € Q«]. (In case
V = XW"Y, which is a right corepresentation for the opposite quantum
groupoid, it is clear that Dy = D by Proposition 11.3.5.) Then Dy evi-
dently becomes a Banach algebra by the corepresentation property of V. It
will be a C*-algebra even, by the manageability of V' (Theorem 5.11 of [30]):

V(s®y),ruy={V*(s® Jép—l/Qu)’ r® J@P1/2y>
for all r,s € %,y € @(P1/2) and u e @(P_1/2), <o that

(1@ w1202 (V) = (1 @y (V).
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We want to show that V € M(Dy ® D). It is then again enough to show
that V e M(Dy ® By(s)), since

Vis Wi ViaWas = (A(1) @ 1)Vis,
with W e M(By(H) & D) (where for notational convenience we have
min

dropped the representation symbols for the left and right representation of
L on ¢ associated to V).

Now the corresponding part of Proposition 11.2.2 applies word for word, up
to the point where we have shown that (Dy ® By(J))V € Dy & By(H).

But since V* is a right corepresentation for the opposite measured quan-
tum groupoid (cf. Theorem 3.12.(i) of [30]; this opposite measured quantum
groupoid is still of our special form), and since Dy = Dy=, we also have
(Dy ® Bo(s2))V* € Dy ® By(s). This concludes the proof. O

min min
Now we can state the main result:

Proposition 11.3.8. There is a one-to-one-correspondence between left
corepresentations of (L,Q,d, f,A) and non-degenerate *-representations of
D*.

Proof. If V is a left corepresentation for (L,Q,d, f,T',T,T",€) (given in the
form of a partial isometry), it is clear by Propositions 5.5 and 5.10 of [30]
that w — (w®t)(V) determines a non-degenerate *-representation of .2} (Q).
Conversely, let 7 be a non-degenerate *-representation of D¥. As we have
seen, this comes equipped with a *-representation a and anti-*representation
bof Lon¥9. Let V = (1 ® 7)(W"), which is a well-defined partial iso-
metry in M(D ® By(¥)) by the previous results. Moreover, as necessarily

min

a(z) = 7(d“(x)) and g(:c) = ﬁ(f“(x)) for x € L by the non-degeneracy of
the representations, we see that V satisfies the right properties with respect
to its initial and final projection, and that it satisfies the right commutation
relations with respect to a and b. Since (A®¢)(V) = Vi3Vas, we get that V'
is indeed a left co-representation.

Of course, both operations are also inverses of each other.






Nederlandse samenvatting

Het kernbegrip in deze thesis is de ‘comonoidale Morita equivalentie’. We
belichten dit concept vanuit drie standpunten. Vooreerst voeren we dit be-
grip in voor Hopf algebra’s. Daarna bestuderen we het voor de algebraische
en *-algebraische kwantumgroepen van Van Daele ([93]). Dit beslaat het
eerste deel van onze thesis, dat enkel gebruik maakt van (elementaire) al-
gebraische technieken. In het tweede deel bestuderen we dan comonoidale
Morita theorie voor de lokaal compacte kwantumgroepen van Kustermans
en Vaes ([56]), en gebruiken hiertoe extensief de theorie van von Neumann
algebra’s en gewichten (niet-commutatieve integratietheorie).

We geven nu wat meer uitleg over deze begrippen, en over de resultaten die
in deze thesis behaald werden.

De volgende symbolen zullen vaak gebruikt worden. Met k& wordt een
(willekeurig) veld bedoeld, en met ® het tensorproduct over k. Met ¢ wordt
altijd het ‘identiteitsmorfisme’ aangeduid. Als S € B(.%) een verzameling
van begrensde operatoren op een zekere Hilbertruimte 57 is, dan duiden we
met S’ zijn commutant aan, i.e. de verzameling van alle begrensde opera-
toren op ¢ die met elk element uit S commuteren. Met ® duiden we het
tensorproduct van Hilbertruimtes en het (spatiaal) tensorproduct van von
Neumann algebra’s aan. Met X noteren we de ‘volta’: als J en ¢ bijvoor-
beeld twee Hilbertruimtes zijn, dan is ¥ : 7 ® ¥ — ¥4 ® S de afbeelding
die £ ® n afstuurt op n ®&.

N.1 Morita theorie voor Hopf algebra’s

Het eerste hoofdstuk van deze thesis is bedoeld als inleiding, motivatie en
intuitie met betrekking tot de theorie die in latere hoofdstukken ontwikkeld

345
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wordt. We beginnen met het invoeren van de welbekende notie van Morita
equivalentie tussen (unitale associatieve) algebra’s A en D (over een veld
k). We presenteren drie equivalente definities: één categorisch gekleurde,
één concrete maar asymmetrische, en één concrete en symmetrische defini-
tie. Dit zijn met name, respectievelijk, ‘het bestaan van een (k-lineaire)
equivalentie tussen de module-categorieén van A en D’, ‘het bestaan van
een getrouw projectieve, eindig voortgebrachte rechtse A-module met (een
kopie van) D als endomorfisme-groep’, en tenslotte ‘het bestaan van een link
algebra tussen A en D’.

De eerste van deze definities is de originele, zoals ingevoerd door Morita in
de jaren ’50. Het is deze karakterisatie die de ‘betekenis’ van Morita equi-
valentie laat zien: als men een abelse (k-lineaire) categorie beschouwt als
een kwantisatie van een klassiek schema over k (in de algebro-geometrische
betekenis), dan kan het best zijn dat, indien de abelse categorie ‘affien’ is,
er meerdere, niet-isomorfe k-algebra’s zijn die deze categorie als spectrum
(i.e. als module-categorie) hebben. Zo heeft een gewoon punt reeds een
hele rij van niet-commutatieve realisaties (=representaties), namelijk de n-
bij-n-matrices over k. Men kan dan bijvoorbeeld een eigenschap van een
algebra een eigenschap van de onderliggende kwantumruimte noemen, als
ze stabiel is onder Morita equivalentie. (Merk op dat dit slechts één inter-
pretatie is: men kan evengoed de algebra’s zelf als (functie-algebra’s van)
kwantumruimtes zien, en de bijhorende module-categorie als een grote, maar
incomplete invariant.)

De tweede definitie van Morita equivalentie legt minder nadruk op het
equivalentie-aspect (het is bijvoorbeeld niet eens zonder meer duidelijk uit
deze definitie of Morita equivalentie werkelijk een equivalentie-relatie tussen
algebra’s bepaalt). Ze geeft eerder een handige constructiemethode om,
gegeven een algebra, een Morita equivalente algebra te creéren. Inder-
daad: gegeven een algebra en een getrouw projectieve, eindig voortgebrachte
rechtse A-module B, geeft D = End 4(B4) meteen een met A Morita equiv-
alente algebra. Het is precies dit reconstructie-aspect dat verderop in de
thesis in meer complexere situaties behandeld wordt, en het meeste technis-
che werk vergt.

De derde definitie tenslotte is vooral interessant ten aanzien van veralge-
meningen. Met een link algebra tussen twee algebra’s wordt een unitale
algebra F met vaste projectie (= idempotent element) e € E bedoeld, zo-
dat zowel e als zijn complement 1 — e vol zijn (i.e. er bestaat geen 2-zijdig
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ideaal dat één van deze projecties bevat), en zodat de ‘hoeken’ van E, i.e. de
algebra’s eFe en (1 — e)E(1g — e), isomorf zijn, als algebra, met respec-
tievelijk A en D. Het voordeel van deze definitie, naast het feit dat ze
volledig symmetrisch is ten opzichte van A en D, is dat er enkel gebruik
wordt gemaakt van algebra’s. Zoals gezegd leidt dit op een erg eenvoudige
wijze tot goede veralgemeningen, zoals bijvoorbeeld een Morita equivalentie
tussen niet-unitale algebra’s van een bepaald type: men eist dan dat er een
link algebra tussen hen bestaat van hetzelfde type. Deze notie werd bij mijn
weten vooral gebruikt in de operator-algebraische context (zie [67] waar het
begrip ingevoerd wordt in de C*-algebraische context). Merk op dat een
link algebra E zelf ook Morita equivalent is met beide algebra’s A en D
waartussen het een Morita equivalentie creéert. We komen hier later nog
even op terug.

Nu gaan we wat meer structuur plaatsen op de algebra’s die Morita equi-
valent zijn: we voorzien ze van een Hopf algebra structuur (met bijectieve
antipode).

Definitie N.1.1. Een koppel (A, A4) wordt een Hopf algebra genoemd, als

A een unitale algebra is, voorzien van een unitaal homomorfisme Ay : A —

AQ®A, de covermenigvuldiging, dat voldoet aan de volgende coassociativiteits-
voorwaarde:

(AA®ta)As = (La®AQ AL

Verder moet er een unitaal homomorfisme €4 : A — k bestaan, de co-
eenheid, en een bijectieve lineaire afbeelding Sa : A — A, de antipode,
zodat

(Ea®taA)As =14 =(a®ca)Ay

en

SA(CL(l))CL(Q) = 5(&)1A = a(l)SA(a(Q)).

We hebben hierbij ondertussen de Sweedler-notatie ingevoerd: men schrijft
dan (formeel) Aa(a) = a()®a(z), wat toelaat om berekeningen met de cover-
menigvuldiging sterk te vereenvoudigen. Hopf algebra’s kunnen gezien wor-
den als niet-commutatieve veralgemeningen van de (polynomiale) functie-
algebra’s op (algebraische) groepen, waarbij bijvoorbeeld de covermenig-
vuldiging nu de rol van de groepsvermenigvuldiging speelt. We merken
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op dat S4 anti-multiplicatief is (Sa(aa’) = Sa(a’)Sa(a)), en ook anti-
comultiplicatief:

Ax(Sala)) = Salaey) @ Salany).

Men kan nu op zoek gaan naar een notie van Morita equivalentie tussen Hopf
algebra’s die de extra structuur in het oog houdt. We zullen deze equivalen-
tie ‘comonoidale Morita equivalentie’ noemen (al merken we op dat er in de
literatuur reeds andere terminologieén voorhanden zijn). Ze kan opnieuw op
drie manieren gekarakteriseerd worden, net als gewone Morita equivalentie.

Vooreerst is er de meest natuurlijke, categorische definitie. Voor Hopf
algebra’s verkrijgt de categorie van modules voor de onderliggende alge-
bra namelijk een extra structuur: het wordt een monoidale categorie. Dit
betekent dat de categorie voorzien is van een bifunctor ®, die (‘op compati-
bele isomorfismes na’) associatief is. In ons geval is deze bifunctor het gewone
tensorproduct van vectorruimtes, waarop een module-structuur gecreéerd
wordt met behulp van de covermenigvuldiging: als A de Hopf algebra is en
V en W twee (linkse) modules, dan definieert men de volgende A-module
structuur op VO W:

a-(v@uw):=Axya) - (vw),

waarbij we in het rechterlid op het linkse been van A4(a) de V-module
structuur toepassen, en op het rechtse been de W-module structuur.

Er is nu een natuurlijke notie van comonoidale equivalentie tussen monoidale
categorieén (C,®) en (D,®) (waarbij we voor de notationele eenvoud de
tensorproducten niet verder labelen): men eist dat er een equivalentie F
tussen beide categorieén bestaat, zodat de functoren F o ® en ® o (F' x F)
van het Cartesisch product C x C naar D natuurlijk isomorf zijn via een
natuurlijk isomorfisme u dat verder aan de volgende vergelijking voldoet
(die de 2-cocykel identiteit wordt genoemd):

(uxy ® tpz))uxey,z = (trx) ® uy,z)ux, Yoz

We zeggen nu dat twee Hopf algebra’s comonoidaal Morita equivalent zijn
als hun module-categorieén comonoidaal equivalent zijn.

De tweede definitie voor comonoidale Morita equivalentie is opnieuw asym-
metrisch van aard. We voeren hiertoe de volgende notie in.
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Definitie N.1.2. Zij A een Hopf algebra. Een comonoidale (rechtse) Morita
module voor A is een rechtse A-module B, voorzien van een coassociatieve
lineaire afbeelding Ap : B — B® B, zodat

Ap(ba) = Ap(b)As(a), voor alle a € A,be B,
en zodat de afbeelding
BOA—->BOB:b®a— Ap(b)(1®a)
een (lineair) isomorfisme is.

We zeggen dan dat twee Hopf algebra’s A en D comonoidaal Morita equi-
valent zijn, als er een comonoidale rechtse Morita A-module bestaat, z6 dat
D =~ Enda(Ba), en z6 dat, als we D identificeren met zijn beeld onder dit
isomorfisme, Ag(d-b) = Ap(d) - Ap(b). Automatisch volgt hieruit dat B
dan getrouw projectief en eindig voortgebracht is over A, zodat we in ieder
geval reeds weten dat D en A als algebra’s Morita equivalent zijn. We noe-
men zo een B dan een comonoidale equivalentie bimodule tussen de Hopf
algebra’s A en D. We zien dat deze definitie opnieuw eerder gericht is op de
constructie van comonoidale equivalenties: we tonen in de thesis inderdaad
aan dat een comonoidale Morita module gecompleteerd kan worden tot een
comonoidale equivalentie bimodule. In het bijzonder kan dus vanuit de A-
module B een Hopf algebra D gemaakt worden.

De derde definitie van comonoidale Morita equivalentie houdt in, dat de twee
Hopf algebra’s ingebed moeten zijn als hoeken van een zekere zwakke Hopf
algebra F, die we de zwakke Hopf link algebra noemen. Een zwakke Hopf
algebra is een veralgemening van het begrip Hopf algebra, waarbij bijvoor-
beeld niet langer ge€ist wordt dat de covermenigvuldiging eenheidbewarend
is (zie [11]). Zwakke Hopf algebra’s kunnen gezien worden als de niet-
commutatieve versies van ‘affiene groepoide-schema’s met een eindige set
objecten’. In het geval van comonoidale Morita equivalentie kan de zwakke
Hopf link algebra als volgt geinterpreerd worden: het is een kwantum-
groepoide met twee klassieke objecten, zodat de twee comonoidaal equiv-
alente Hopf algebra’s de rol spelen van groepalgebra’s van de endomorfis-
megroepen van de twee objecten, en zodat de anti-diagonale hoeken van F
(i.e. (1g —e)Ee en eE(1g — €)) de rol spelen van ‘pijl-bimodules’ voor de
morfismes tussen de twee objecten. Formeel vertaalt dit zich onder andere
in het feit dat de onderliggende algebra voor de zwakke Hopf link algebra
de structuur van een link algebra heeft, op zodanige wijze dat de bijhorende
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projectie e én zijn complement beide groepsgelijkende elementen zijn (dus
bijvoorbeeld Ag(e) = e®e).

Naast de notie van ‘comonoidale Morita equivalentie’ is er ook de ‘monoidale
co-Morita equivalentie’ tussen Hopf algebra’s. Formeel is deze theorie vol-
komen duaal aan de vorige, en in het geval van eindig dimensionale Hopf
algebra’s is deze dualiteit bijvoorbeeld zelfs meer dan louter formeel: men
schakelt van de ene theorie naar de andere over door duales van vector-
ruimtes te nemen, en alle structuur via transpositie over te brengen. Op-
nieuw is er een drievuldigheid aan definities voor monoidale co-Morita equi-
valentie beschikbaar, die we nu niet meer allemaal in extenso zullen be-
spreken: categorisch zal dit neerkomen op het monoidaal equivalent zijn
van de co-module categorieén van de beide Hopf algebra’s, terwijl concreet
men het bestaan van een ‘bi-Galois object’ of ‘zwakke Hopf co-link algebra’
tussen de twee Hopf algebra’s eist. We gaan enkel de theorie van (bi-)Galois
objecten nog wat nader toelichten.

Een (rechts) Galois object voor een Hopf algebra is formeel duaal aan een
comonoidale Morita module. ‘Transponeren’ we de structuur van deze laat-
ste, dan bekomen we de volgende definitie.

Definitie N.1.3. Zij A een Hopf algebra. Een (rechts) Galois object voor
A is een unitale algebra B, voorzien van een rechtse coactie ap, i.e. een
unitaal homomorfisme ap : B - B ® A dat voldoet aan

(Lt®Ax)ap = (ap®ta)ap (coactie eigenschap),
20 dat de afbeelding
BOB—->BOA: bV — (b®1)ag(b)

een bijectie is.

Als A en D twee Hopf algebra’s zijn, dan is een bi-Galois object tussen A en
D een unitale algebra B voorzien van een rechste A-Galois object structuur
ap en een linkse D-Galois object structuur yg : B — D ® B, 20 dat ap en
B commuteren:

(vB ®ta)ap = (tp @ aB)vB-

De theorie van (bi-)Galois objecten werd uitvoerig behandeld in het artikel
[71]. Eén van de belangrijke stellingen in dat artikel betreft opnieuw een
reconstructie-resultaat: een rechts Galois object kan uniek gecompleteerd



N.2 Galois objecten voor algebraische kwantumgroepen 351

worden tot een bi-Galois object. In het bijzonder kan dus ook uit een Ga-
lois object een ‘nieuwe’ Hopf algebra geconstrueerd worden (die natuurlijk
isomorf zou kunnen zijn met de oorspronkelijke Hopf algebra). We willen
ook vermelden dat er een meetkundige intepretatie voor Galois objecten is:
ze kunnen gezien worden als niet-commutatieve versies van hoofdvezelbun-
dels (‘principal fiber bundles’) over een punt. Dit merkwaardig, omdat dit
concept in de puur klassieke context van een bedrieglijke eenvoud is: als we
ter voorbeeld ons beperken tot eindige groepen, dan is een hoofdvezelbun-
del over een punt, met een eindige groep & als structuurgroep, niets anders
dan een eindige verzameling X, voorzien van een (rechtse) actie van &, z6
dat deze actie zowel transitief (er is slechts één orbiet) als vrij (& ageert
trouw op elke orbiet) is. Met andere woorden, X ‘is’ gewoon de groep &
zelf, voorzien van de actie via rechtse translatie. Er is echter de volgende
subtiliteit: het isomorfisme tussen X en & is niet natuurlijk: men moet
één van de punten van X het label ‘eenheid’ toekennen! Dit feit kan gezien
worden als een zwakke weerspiegeling van het vreemde gedrag dat mogelijk
is in de kwantum-context. (We moeten hierbij natuurlijk opmerken dat er
wel degelijk bi-Galois objecten bestaan tussen bepaalde niet-isomorfe Hopf
algebra’s. Een mooie klasse van voorbeelden werd geconstrueerd in [9] (zie
ook [10] voor voorbeelden in een meer operator-algebraisch kader).).

N.2 Galois objecten voor algebraische kwantum-
groepen

In de volgende drie hoofdstukken van de thesis (hoofdstukken 2 tot en met
4) ontwikkelen we (in essentie) een theorie van (co-)monoidale (co-)Morita
equivalentie voor algebraische kwantumgroepen.

In het tweede hoofdstuk van onze thesis worden de belangrijkste definities
en resultaten uit [92] en [93] uiteengezet. In het artikel [93] wordt de notie
van ‘algebraische kwantumgroep’ ingevoerd. Dit is een object dat tege-
lijkertijd een veralgemening als een specialisatie van een Hopf algebra is.
Namelijk: het is een veralgemening omdat er niet langer geéist wordt dat
de onderliggende algebra een eenheid heeft, maar het is ook een specialisa-
tie omdat men het bestaan van een invariante functionaal aanneemt. Men
moet deze functionaal zien als het analogon van een (linkse) Haarmaat op
een gewone lokaal compacte groep.

Om de definitie van een algebraische kwantumgroep te kunnen formuleren,
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moeten we enkele begrippen aangaande niet-unitale algebra’s invoeren.

Definitie N.2.1. Zij A een (associatieve) algebra, mogelijk zonder eenheid.

We noemen A niet-ontaard als A een trouwe linkse en rechtse module over
zichzelf is. Met andere woorden, als a € A woldoet aan aa’ = 0 voor alle
a' € A, dan is a = 0, en evenzo als a’a = 0 voor alle a’ € A.

We noemen A idempotent als A- A = A.

Definitie N.2.2. Zij A een algebra, mogelijk zonder eenheid. De algebra
M (A) van vermenigvuldigers voor A (‘multiplier algebra’) bestaat uit koppels
m = (L, Tm), met by, rm, lineaire afbeeldingen A — A die voldoen aan

voor alle a,a’ € A. We noteren dan l,(a) = m-a en rp(a) = a-m, zodat
bovenstaande gelijkheid een associativiteits-eigenschap uitdrukt:

(a"-m)-a=ad-(m-a).

Merk op dat als A een niet-ontaarde algebra is, we A kunnen vereenzelvi-
gen met een deel van M(A), door a af te beelden op (I, 7,), waarbij [, de
operatie links en r, de operatie rechts vermenigvuldigen met a voorstelt.

De volgende definitie geeft aan wat de goede notie van morfismes tussen
niet-ontaarde algebra’s is.

Definitie N.2.3. Zij A en B niet-ontaarde algebra’s, en f : A — M(B)
een homomorfisme.

We zeggen dat f de unieke unitale extensie-eigenschap heeft of u.u.e. is, als

F(A)B = B = Bf(A).

We zeggen dat f de unieke extensie-eigenschap heeft of u.e. is, als er een
idempotent p € M (B) bestaat zodat f(A)B = pB en Bf(A) = Bp.

De belangrijkste eigenschap van een u.u.e. homomorfisme is dat ze inder-
daad een unieke uitbreiding tot een unitaal homomorfisme M(A) — M(B)
heeft (terwijl een u.e. homomorfisme uitbreidbaar is tot een homomorfisme
M(A) — M(B) die 1704y afstuurt op de idempotent p waarvan sprake in
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de definitie). Verder merken we op dat als A een niet-ontaarde idempotente
algebra is, de identiteitsafbeelding voor A u.u.e. is, en dat het tensorproduct
van (u.)u.e. afbeeldingen opnieuw (u.)u.e. is.

We kunnen nu de definitie van een algebraische kwantumgroep geven.

Definitie N.2.4. Zij A een niet-ontaarde, idempotente algebra, voorzien
van een u.u.e. homomorfisme Ay : A — M(A® A). We noemen (A, A4)
een algebraische kwantumgroep als A4 aan de coassociativiteits-voorwaarde
(AA®1A)A4 = (14 ® AA)A4 voldoet*, als de afbeeldingen

Ta,2: AOA—->AOA: a®d - Ax(a)(1®d),
Tin, AOA->AOA:a®d - (a®1)Ax(d),
Ta,1 :AOA—->AOA: a®d — Ax(a)(d ®1),
Topn, AOA->AOA: a®d - (1®a)Aa(d)

allen bijectief zijn®, en als er een niet-triviale functionaal p4 : A — k bestaat
die voldoet aan

(t®pa)(Aala)) = pala)la

voor alle a € A, waarbij het linkerlid op natuurlijke wijze geinterpreteerd kan
worden als een vermenigvuldiger voor a.

In [93] wordt dan aangetoond dat deze algebraische kwantumgroepen een
verrassend rijke structuur hebben. Vooreerst is er de verdere structuur van
gewone Hopf algebra’s aanwezig, met name een co-eenheid €4 en inverteer-
bare antipode S4 : A — A. Ten tweede blijkt de links invariante functionaal
¢ 4 automatisch uniek te zijn (op vermenigvuldigen met een niet-nul element
uit k£ na), en te voldoen aan de volgende twee sterke eigenschappen: ¢4 is
getrouw, in de zin dat de afbeeldingen a — pa(a-) en a — w4(-a) beiden
A injectief inbedden in de duale vectorruimte voor A, en ¢4 is modulair, in
de zin dat er een automorfisme o4 van A bestaat zodat

palaca(a’)) = pa(d'a)

voor alle a,a’ € A. Ten derde is er ook een (niet-triviale) rechts invariante
functionaal ¥4 aanwezig, i.e. een functionaal zodat

(Ya®ta)Aala) =vala)la

4waarbij men zin geeft aan deze identiteit door de u.u.e. eigenschap te gebruiken
Swaarbij we echter opmerken dat de bijectiviteit van deze afbeeldingen niet allen on-
afhankelijk van elkaar zijn
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voor alle a € A. Deze functionaal is gemakkelijk te construeren: men stelt
gewoon Y4 = p4 0 S4. Dan toont men aan dat ¢4 ook getrouw en mod-
ulair is. Er geldt echter meer: @4 en 14 zijn nauw met elkaar verbonden
door middel van een modulair element 64 € M(A): dit is een inverteerbare
vermenigvuldiger van A zodat pa(ads) = 1 a(a) voor elke a € A. Ten slotte
kan er ook een scalaire invariant aan (A, A 4) verbonden worden: dit betreft
het getal v4 € k zodat w4 0S4 = v4 - pa. Natuurlijk bestaan er ook veel
commutatie-relaties tussen al deze structuren.

Een andere mooie eigenschap van algebraische kwantumgroepen is dat ze
een dualiteitstheorie toelaten, die nauw verwant is aan de Pontryagin du-
aliteit, gekend voor (lokaal compacte) abelse groepen. Inderdaad, gegeven
een algebraische kwantumgroep A, dan kan men van de deelverzameling
A= {pa(-a) | a € A} van functionalen op A een algebraische kwantum-
groep maken, door de structuur van A te transponeren (waarbij men de links
invariant functionaal moet construeren met behulp van de co-eenheid van
A). Er geldt dan Pontryagin dualiteit, in de zin dat de duale van de duale
canoniek isomorf is met de oorspronkelijke algebraische kwantumgroep.

We weiden op het einde van het tweede hoofdstuk ook wat uit over een
resultaat dat in [21] behaald werd. We moeten opnieuw eerst een definitie
invoeren.

Definitie N.2.5. Een *-algebraische kwantumgroep is een algebraische
kwantumgroep over het veld C, voorzien van een *-structuur (i.e. een anti-
multiplicatieve anti-lineaire involutie * ), zodat A a(a*) = Aa(a)*, en zodat
wala*a) = 0 voor elke a € A.

In [21] tonen we dan aan hoe de verdere structuur van *-algebraische kwan-
tumgroepen essentieel discreet van aard is: de algebra automorfismes o4 en
Sf‘ hebben positief puur puntspectrum (i.e., A heeft een basis van eigenvec-
toren voor deze automorfismes, en bovendien zijn alle eigenwaarden posi-
tief). Hetzelfde geldt voor het modulair element 4. Deze resultaten, die op
betrekkelijk eenvoudige wijze bekomen kunnen worden, laten ons dan toe
om significant eenvoudiger bewijzen te leveren voor enkele hoofdresultaten
uit [53] en [55]. Het laat ons ook toe om te concluderen dat de scalaire
invariant v4 voor *-algebraische kwantumgroepen altijd triviaal 1 is (wat
tot dan toe een open probleem was).
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In het derde hoofdstuk behandelen we in detail de structuur van Galois
objecten voor algebraische kwantumgroepen.

Definitie N.2.6. Zij A een algebraische kwantumgroep. Fen niet-ontaarde
idempotente algebra B, samen met een u.u.e. homomorfisme ap : B —
M(B ® A), wordt een (rechts) Galois object voor A genoemd, als ap een
coactie 18, i.€.

(ap®ta)ap = (tB@Ax)ap

en

ap(B)(1® A) =BOA=(1® A)ap(B),
en de afbeelding
G:BOB—->MBOA): bV - (b®1)ag(t),
die we de Galois afbeelding noemen, injectief is, met B (® A als beeld.

Vooreerst construeren we dan twee speciale getrouwe functionalen op een
Galois object B. De eerste functionaal, die we met ¢p noteren, is een 6 4-
invariante functionaal, in de zin dat

(¢ ®ta)ap(b) = pp(b)da

voor alle b € B. Deze functionaal is tamelijk direct te construeren: ze wordt
volledig bepaald door de identiteit

(tB®pa)ap(b) = pp(b)lp

voor alle b € B. De tweede functionaal, die we met ¢ p zullen noteren, is
niet zo canoniek te construeren, en zal dan ook slechts op een scalaire in k
na bepaald zijn. Deze functionaal zal echter invariant zijn:

(VB ®ta)ap(b) = Yp(b)la

voor alle b € B. We tonen dan aan dat, net als voor algebraische kwan-
tumgroepen, deze twee functionalen met elkaar verbonden zijn door middel
van een modulair element: een inverteerbare vermenigvuldiger g van B die
voldoet aan

¢op(bdg) = Yp(b)

voor alle b e B.
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Vervolgens tonen we aan dat zowel ¢pp als ¥p modulair zijn. Dit laat ons
toe om een u.u.e. homomorfisme 34 : A — M(B° ® B) te definiéren, zodat

B*®A—->BPOB:b’®a— [54(a)(bP®1)

een inverse voor de Galois afbeelding G bepaalt (na de canonieke identi-
ficatie van B°P en B als vectorruimtes). We merken op dat dit resultaat
heel wat meer technische voorbereiding vraagt dan in het geval van Hopf
algebra’s!

Tenslotte komen we tot de merkwaardigste constructie aangaande Galois
objecten, met name deze van een antipode. In feite construeren we eerst een
antipode kwadraat, welke een automorfisme 5123 : B — B is. Zo'n antipode
kwadraat werd ook geconstrueerd voor Hopf algebraische Galois objecten,
al was het bestaan ervan niet meteen van in het begin duidelijk (zie bijvoor-
beeld [75]). Onze constructiemethode is echter essentieel verschillend, en
maakt gebruik van de aanwezige modulaire structuur. Eens deze antipode
kwadraat er is, kunnen we twee antipodes construeren, die echter niet in-
tern zijn: noteren we C = B°P, dan definiéren we de ene antipode S¢ als de
canonieke afbeelding
C — B:b® - b,

terwijl we de tweede antipode Sp definiéren als
B — C:b— S%(b)°P.

Deze twee afbeeldingen voldoen dan inderdaad aan de definiérende eigen-
schap van een antipode, maar tegenover de (externe) covermenigvuldiging
Ba: noteren we formeel Ba(a) = ap) @ apz) € C © B, dan geldt (opnieuw
formeel)

Sc(a[l])ap] = 5,4(@)13

en
voor elke a € A.

We eindigen dit hoofdstuk met het bestuderen van twee speciale situaties.
Ten eerste gaan we na wat er gebeurt als de algebraische kwantumgroep van

een speciaal type is, hetzij compact (wat betekent dat de onderliggende alge-
bra een eenheid heeft), hetzij discreet (wat essentieel betekent dat de duale
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compact is, al zijn er ook intrinsiekere karakterisaties voorhanden). De al-
gebra van een bijhorend Galois object blijkt dan precies van dezelfde vorm
te zijn als de algebra van de kwantumgroep: voorzien van een eenheid als
de bijhorende kwantumgroep compact is, en discreet (i.e. met elk principaal
links of rechts ideaal eindig-dimensionaal) als de bijhorende kwantumgroep
discreet is.

Ten tweede definiéren we een notie van *-Galois object voor *-algebraische
kwantumgroepen. Een *-Galois object (B, ag) voor een *-algebraische kwan-
tumgroep A is een Galois object, zodat de algebra B verder voorzien is van
een goede *-structuur (in de zin dat Y}, b7b; = 0 impliceert dat elke b; = 0),
en zodat ap deze *-structuur bewaart. We tonen dan aan dat pp en ¥p
positief zijn (mogelijk na vermenigvuldigen met een scalair getal), i.e., dat
©p(b*b) = 0 en p(b*b) = 0 voor elke b € B. We doen dit opnieuw door
te tonen dat ‘links (en rechts) vermenigvuldigen met het modulair element
g’ een diagonaliseerbare lineaire afbeelding is, met enkel strikt positieve
eigenwaardes.

In het vierde hoofdstuk introduceren we het begrip ‘algebraische link kwan-
tumgroepoide’.

Definitie N.2.7. Fen algebraische link kwantumgroepoide bestaat uit een
drietal (E,e,Ag), met E een niet-ontaarde algebra, e een idempotent in
M(FE) die voldoet aan FeE = E en E(1p—e)E = E, en A een coassociatief
u.e. homomorfisme E — M(E ® E) dat voldoet aan

Agp(e) =e®e

en

AE(lE — 6) = (1E — 6) ®(1E — 6),

76 dat A := eEe en D := (1g — e)E(1lg — €), samen met de beperking van
Ag, algebraische kwantumgroepen worden.

We tonen aan dat ook deze objecten voorzien zijn van co-eenheid en an-
tipode, zodat ze zich tot zwakke link Hopf algebra’s verhouden als alge-
braische kwantumgroepen tot Hopf algebra’s. Vervolgens gaan we, via du-
alisatie, vanuit een rechts Galois object B voor een algebraische kwantum-
groep A, een algebraische link kwantumgroepoide bouwen. Dit is opnieuw
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een tamelijk technisch proces. Vooreerst gaan we de functionaal ¢p naar
een functionaal ¥¢c op C' = B°P overzetten, door

Yo (b°P) = ¢p(b)

te definiéren, en noteren dan C' = {tvc(-c) | c € C}. Nukunnen we de ruimte
van functionalen B = {pp(-b) | b € B} op B tot een rechtse A-module
maken, door de coactie ap te transponeren. We kunnen B dan als lineaire
afbeeldingen van A naar B beschouwen, via ‘links vermenigvuldigen’. An-
derzijds kan de ruimte C geidentificeerd worden met lineaire afbeeldingen
van B naar /Al, door de formule

(wa1 - wi2)(a) = (w21 @ wi2)Bala)

VOOT Wwoq € 6’ w1 € Ben a€ A. Als we dan D definiéren als de lineaire span
van de afbeeldingen van B naar zichzelf, bekomen door eerst een element
van C toe te passen en dan een element van B dan kunnen we al deze
vectorruimtes samen groeperen in een directe som
po(D B
cC A’

welke op natuurlijke wijze een algebra vormt (bijvoorbeeld als algebra van
. : . B :
lineaire operatoren op de directe vectorruimte som i ). Dit levert

ons de onderliggende algebra van de te construeren algebraische link kwan-
tumgroepoide. De covermenigvuldiging wordt dan bekomen door de ver-
menigvuldiging op B te transponeren tot een covermenlgvuldlglng op B
en deze op natuurlijke wijze uit te breiden tot E.

We zijn nu echter nog niet klaar: we willen immers dat lA), die ondertussen
een ‘algebra met covermenigvuldiging’ is, ook een links invariante func-
tionaal bezit. We passen hiertoe de methode toe uit [23] (onze methode
uit [19] was iets omslachtiger): door een gepaste lineaire bijectie op B te
transponeren bekomen we een afbeelding o : BB , die ons toelaat om

op D een functionaal ¢p te definiéren via de formule

opwiz - wa) = @ (w0 g(wiz))

5Men moet enige voorzichtigheid aan de dag leggen hieromtrent, daar B geen algebra
is, en er dus in het algemeen geen ‘ruimte van vermenigvuldigers’ is. Bijgevolg is het
niet duidelijk waar de covermenigvuldiging terecht moet komen. Echter, omdat B een
rechtse A-module is, is er wel een natuurlijke beeldruimte van ‘(linkse) vermenigvuldigers’
voorhanden.
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VOOT w9 € Ben wo1 € C. Een laatste computationeel technisch bewijs toont
dan aan dat deze functionaal inderdaad links invariant is ten opzichte van
de geconstrueerde covermenigvuldiging op D, zodat deze laatste een alge-
braische kwantumgroep is.

In een volgende sectie tonen we aan hoe we terug moeten, i.e. hoe we va-
nuit een algebraische link kwantumgroepoide een Galois object kunnen con-
strueren. Dit gebeurt in essentie opnieuw door alle structuur te dualiseren,
en deze stap is niet zo moeilijk meer. Omdat een algebraische link kwantum-
groepoide echter twee algebraische kwantumgroepen met zich meedraagt,
wier rollen volledig symmetrisch zijn, kunnen we niet één, maar twee Galois
objecten maken. Deze kunnen dan gecombineerd worden in een bi-Galois
object.” Dit betekent dus dat we Schauenburgs reconstructieproces, met
een omweg via dualiteit, bewerkstelligd hebben voor algebraische kwantum-
groepen:

Stelling N.2.8. Zij A een algebraische kwantumgroep, en (B, ap) een rechts
A-Galois object. Dan bestaat er een algebraische kwantumgroep D en een
linkse coactie yp van D op B, zodat (B,vp,ap) een D-A-bi-Galois object
18.

We schetsen in de thesis ook kort hoe men aan kan tonen dat D en yp uniek
bepaald zijn, al geven we hier geen volledig bewijs voor. We noemen D dan
de gereflecteerde algebraische kwantumgroep (van A langsheen B).

We komen ook nog even terug op het geval van *-Galois objecten voor
*-algebraische kwantumgroepen. In dit geval kunnen we namelijk aanto-
nen dat de gereflecteerde algebraische kwantumgroep ook een *-algebraische
kwantumgroep is, i.e. dat er een natuurlijke *-structuur bestaat die de links
invariante functionaal positief maakt. We kunnen dit dan gebruiken om te
tonen dat, naast het modulair element, ook de antipode kwadraat en het
modulair automorfisme van een *-Galois object diagonaliseerbaar zijn, met
positieve eigenwaardes.

In een laatste sectie behandelen we een concreet voorbeeld van een Galois
object. We geven toe dat dit voorbeeld niet zo geschikt is om de algemene
theorie te presenteren: het betreft immers een Galois object voor een Hopf
algebra (met invariante functionaal), en past dus volledig binnen Schauen-

"De definitie van een bi-Galois object voor algebraische kwantumgroepen is volledig
dezelfde als voor Hopf algebra’s.
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burgs theorie van (bi-Galois) objecten. Niettemin kunnen we in dit voor-
beeld concreet nagaan hoe de dualiteitstheorie werkt. Het blijkt ook dat
de gereflecteerde algebraische kwantumgroep in dit geval een nieuwe familie
van Hopf algebra’s met invariante functionalen oplevert. We zijn ons niet
bewust van het voorkomen van deze voorbeelden in de literatuur, al is het
best mogelijk dat ze een onderdeel vormen van een grotere familie die reeds
bekend was.

N.3 von Neumann algebraische (Galois objecten

We gaan nu over tot het tweede deel van de thesis, dat in het kader van de
operatoralgebra’s, en specifieker, von Neumann algebra’s plaatsvindt.

In de eerste drie hoofdstukken van dit deel (hoofdstukken 5 tot en met 7)
wordt een theorie van Galois objecten voor von Neumann algebraische kwan-
tumgroepen ontwikkeld.

We beginnen dit deel met een hoofdstuk (hoofdstuk 5) dat een overzicht
geeft aangaande von Neumann algebra’s en hun gewichtentheorie.

Definitie N.3.1. Een von Neumann algebra (of W*-algebra) is een unitale
*-algebra die isomorf is met een o-zwak gesloten deel-*-algebra van de ruimte
B(A) van begrensde operatoren op een Hilbertruimte .

De theorie van von Neumann algebra’s, wier grondslagen reeds in de jaren
’30 door Murray en von Neumann gelegd werden, is nog steeds een actief
onderzoeksdomein, met verschillende subdisciplines (studie van II;-factoren,
studie van vrije probabiliteit, studie van deelfactoren, ...). Wij zullen vooral
de structuurstellingen nodig hebben die eind jaren 60 door Tomita en Take-
saki behaald werden, en die bekend staan onder de naam ‘Tomita-Takesaki
theorie’. Een overzicht van deze theorie is te vinden in de eerste hoofd-
stukken van het referentiewerk [84].

We presenteren eerst de definitie van een ‘gewicht op een von Neumann
algebra’, wat een niet-commutatieve versie is van ‘maat op een meetbare
ruimte’.

Definitie N.3.2. Zij N een von Neumann algebra. Fen gewicht op N is
een semi-lineaire afbeelding ¢ van de kegel van positieve elementen N naar
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het onbegrensde interval [0, +o0].

Een gewicht wordt getrouw genoemd, als ¢(x) = 0 voor een x € NT im-
pliceert dat x = 0.

Een gewicht wordt semi-eindig genoemd, als het linkse ideaal A, van ele-
menten x € N waarvoor (x*x) < oo een o-dicht deel van N vormdt.

Fen gewicht wordt normaal genoemd, als voor elk stijgend naar boven be-
grensd net x; € N geldt dat o(x) = lim p(z;), waarbij x = sup z;.

We zullen in het vervolg uitsluitend met normale, semi-eindige, getrouwe
gewichten werken, en noemen deze dan nsf gewichten (waarbij we de afkor-
ting van de FEngelse termen blijven behouden). We merken op dat een nsf
gewicht (beperkt en) uitgebreid kan worden tot een lineaire functionaal op
elementen van de vorm ), xfy;, met x;,y; € A,. Elementen van deze
laatste vorm noemen we de integreerbare elementen voor ¢, en we noteren
de verzameling van al deze elementen met .#,.

De volgende stelling is een deel van het kernresultaat van Tomita-Takesaki-
theorie, dat toont dat er op niet-commutatieve von Neumann algebra’s een
natuurlijke ‘tijdsevolutie’ is.

Stelling N.3.3. Zij N een von Neumann algebra, en ¢ een nsf gewicht op
N. Dan bestaat er een R-geparametrizeerde groep of van *-automorfismes
van N, de modulaire één-parametergroep voor ¢ genaamd, die op de vol-
gende manier met  verbonden is: ¢ is of -invariant, in de zin dat poof = ¢
voor elke t € R, en voor elke x,y € N, AN zal de volgende conditie gelden,
de KMS-conditie genaamd®: er bestaat een begrensde analytische functie
Fy, op het domein {z € C | 0 < Im(z) < 1}, uitbreidbaar tot een continue
afbeelding op de sluiting van dit domein, z6 dat Fy,(t) = o(of (y)z) en
Fpy(t +1) = p(xof (y)) voor alle t € R.

We gebruiken in onze thesis vooral een variant van de KMS-conditie. Voor

voldoende veel elementen y € N (die we in het vervolg ‘elementen van de

Tomita algebra van ¢’ zullen noemen) zal namelijk ¢ — o} (y) uit te breiden

8naar Kubo, Martin en Schwinger, die deze relatie ontdekten in verband met hun

onderzoek omtrent statistische kwantummechanica
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zijn tot een analytische (N-waardige) functie z € C —> AN A 1 2 — af(y),
die dan voldoet aan de volgende eigenschap: voor alle z € A, N Af zal

o(yx) = o(xo?,(y)).

We zien dus dat het bestaan van de modulaire één-parametergroep ons toe-
laat om het ‘spoorloze karakter’ van ¢ op te vangen (waarbij we de lezer
eraan herinneren dat een spoor op een algebra een functionaal 7 is die vol-
doet aan 7(xy) = 7(yx) voor alle z,y in de algebra).

Ook het volgende deel-resultaat van Tomita-Takesaki theorie wordt vaak in
onze thesis gebruikt. We moeten echter eerst wat extra terminologie invoe-
ren. Aan elk nsf gewicht kan een representatie van de von Neumann alge-
bra verbonden worden. Dit heet de GNS-constructie voor het nsf gewicht,
naar Gelfand, Naimark en Segal. Vooreerst creért men met behulp van het
gewicht de Hilbertruimte #2(N, ¢), bekomen door .4, te completeren naar
de norm

[z]p2 = p(a"z).

Deze voorziet men dan van de linkse representatie van N via links ver-
menigvuldigen. De canonieke afbeelding A4, — Z2(N,¢) wordt verder
genoteerd als A,. In het vervolg zullen we £?(N, ) met £?(N) noteren,
omdat men aan kan tonen dat er tussen alle linkse N-modules .Z?(N, ¢), met
o lopend over alle nsf gewichten, natuurlijke unitaire isomorfismes bestaan.

Stelling N.3.4. Zij N een von Neumann algebra, en ¢ een nsf gewicht op
N. De modulaire automorfismegroep voor ¢ wordt op £?(N) geimplementeerd
door een canonieke één-parametergroep van unitairen Vfﬁ, i de zin dat
VfﬁxV;it = of(z) voor alle z € N. We noemen de voortbrenger V., van
deze één-parametergroep de modulaire operator voor .

Er bestaat verder een anti-unitaire involutieve operator Jy op L*(N), de
modulaire conjugatie genaamd, zodat Jy commuteert met Vg, en zodat
JNNJn = N'. Deze modulaire conjugatie is onafhankelijk van het gewicht

@Y.

We stippen verder nog één resultaat aan uit dit hoofdstuk van onze thesis,
dat in het verdere verloop van deze samenvatting nog even ter sprake zal
komen. Dit heeft te maken met Morita theorie voor von Neumann algebra’s.

Definitie N.3.5. Zij M en P von Neumann algebra’s. We noemen M en P
W#*-Morita equivalent als er een Hilbertruimte € bestaat, voorzien van een
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trouwe normale® unitale linkse *-representatie van P en een trouwe normale
rechtse *-representatie van M, z6 dat P', de commutant van (het beeld van)
P op 7, precies (het beeld van) de von Neumann algebra M is.

De resulterende W*-Morita theorie is dan betrekkelijk eenvoudig, en kan op
verschillende manieren gekarakteriseerd worden. Voor ons zal het echter van
belang zijn om te weten of, en hoe, men een (nsf) gewicht op één van de von
Neumann algebra’s op canonieke wijze kan overdragen tot de andere von
Neumann algebra. Een antwoord hierop wordt gegeven door het volgende
resultaat van A. Connes.

Stelling N.3.6. Zij 57 een Hilbertruimte, voorzien van een getrouwe rechtse
normale unitale *-representatie 6 van een von Neumann algebra M. Zij oy
een nsf gewicht op M, en veronderstel dat er op H een (R-geparametriseerde)
één-parametergroep van unitairen V% bestaat, die of™ op M implementeert:

VA(m)V " = 0(afM (m)) voor alle m € M.

Dan kan men op canonieke wijze een nsf gewicht op op P = 6(M)" con-
strueren, zodat V' ook of" implementeert:

Vit V=it = o7 (2) voor alle x € P.

Bovendien bestaat er voor elk nsf gewicht pp op P een éénparametergroep
van unitairen V% op A die aan de bovenstaande conditie voldoet, 26 dat de
bovenstaande constructie precies pp oplevert. We noemen V dan de spatiale
afgeleide van pp t.0.v. ppr, en noteren

dop

V=—-.
ey
We vermelden nog dat W*-Morita equivalentie ook geformuleerd kan met

behulp van link structuren.

Definitie N.3.7. Fen von Neumann link algebra is een koppel (Q, €) bestaande
uit een von Neumann algebra Q) en een (zelftoegevoegde) projectie e € Q, zo-
dat de 2-zijdige idealen voortgebracht door e en 1 — e beiden o-zwak dicht
zign in Q.

Lemma N.3.1. Zij M en P twee von Neumann algebra’s. Dan zijgn M en

P W*-Morita equivalent als en slechts als er een von Neumann link algebra
(Q,e) bestaat zodat M = eQe en P = (1 —e)Q(1 —e).

%.e. continu t.0.v. de o-zwakke topologie
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In het zesde hoofdstuk van onze thesis brengen we de belangrijkste resul-
taten uit de artikels [56], [57] en [85] samen. In de eerste twee van deze
artikels wordt een elegante definitie van lokaal compacte kwantumgroepen
voorgesteld. We geven enkel de von Neumann algebraische versie van deze
definitie, die in [57] besproken wordt. Deze definitie is verbazend compact.

Definitie N.3.8. Fen von Neumann algebraische kwantumgroep bestaat
uit een koppel (M, Anr), waarbij M een von Neumann algebra is en Ay
een unitaal normaal *-homomorfisme M — M ® M is dat aan de coasso-
ciativiteitsvoorwaarde

(A @) Anr = (e @ Anr) Ay

voldoet, en z6 dat er nsf gewichten pyr en s op M bestaan, resp. het links

en rechts invariante gewicht van de kwantumgroep genaamd, die voldoen

aan de volgende eigenschap: voor elke w € M geldt dat
em((w® Ay (x)) = epr(z)w(l) voor alle v € M

PYM?

Y ((t ®@w)Ap(x)) = Yar(z)w(l) voor alle = € %JM.

Hieruit wordt dan een rijke theorie ontwikkeld. In het bijzonder bestaat er
bijvoorbeeld een geassocieerd C*-algebraisch object (i.e. een ‘niet-commuta-~
tieve topologische ruimte’), dat past binnen het kader van de C*-algebraische
kwantumgroepen!® die in [56] worden ingevoerd.

Puur formeel zijn we alle verdere structuren die voorkomen bij von Neumann
algebraische kwantumgroepen reeds tegengekomen toen we de algebraische
kwantumgroepentheorie uit de doeken deden. Alleen zullen de automor-
fismes die daar voorkomen nu veranderd worden in één-parametergroepen
van automorfismes. Zo komt het modulair automorfisme o4 voor de links
invariante functionaal ¢4 op een algebraische kwantumgroep A nu overeen
met de modulaire één-parametergroep van automorfismes o™ voor het links
invariante gewicht pp; op een von Neumann algebraische kwantumgroep
M (en o4 kan geinterpreteerd worden als 0”}). Verder zal er een één-
parametergroep 7 van automorfismes op M zijn, de schaalgroep genaamd,
zodat 7'% correspondeert met de antipode kwadraat op een algebraische

10WWe willen hierbij opmerken dat het begrip lokaal compacte kwantumgroep, waar we
op bepaalde plaatsen gebruik van hebben gemaakt, op zich niet echt bestaat: het is eerder
een verzamelnaam voor alle C*-algebraische kwantumgroepen die eenzelfde geassocieerde
von Neumann algebraische kwantumgroep hebben.



N.3 von Neumann algebraische Galois objecten 365

kwantumgroep. Samen met een zeker involutief anti-automorfisme R/,
de unitaire antipode genaamd, kunnen we dan op M een antipode Sy =
Ry o TZI. 1 maken, welke nu echter geen katje is om zonder handschoenen
aan te pakken: dit is immers een onbegrensde afbeelding van een (dicht
deel van) M naar zichzelf. Hoewel hiermee dan inderdaad zin gegeven kan
worden aan de antipode eigenschap, bekend van de Hopf algebra theorie,
zullen we meestal teruggrijpen naar Ry en 77 afzonderlijk. Verder is er
voor een von Neumann algebraische kwantumgroep ook een modulair ele-
ment dps voorhanden, dat nu een aan M geaffilieerde, onbegrensde, strikt
positieve operator is, en een zekere scalaire invariant vy; € RY, de schaal-
constante genaamd. In [94] wordt een voorbeeld geconstrueerd waar deze
schaalconstante niet triviaal is (in tegenstelling dus met de situatie voor
*_algebraische kwantumgroepen, welke in feite een speciale klasse van von
Neumann algebraische kwantumgroepen uitmaken).

Er is nog één verdere structuur die vermeld moet worden. Deze trad ook al
impliciet op bij de algebraische kwantumgroepen.

Definitie N.3.9. Zij 57 een Hilbertruimte. Fen multiplicatieve unitaire op
A is een unitaire W € B(A ® ), die voldoet aan de pentagon-gelijkheid:

WiaWisWaz = WazWia.

Hierbij hebben we gebruik gemaakt van de beentjesnummering: W;; is de
operator op een tensorproduct van een willekeurig aantal kopieén van 2,
die op de i-de en j-de component als W werkt, en de overige componenten
ongemoeid laat. Bijvoorbeeld: Wig op 7 Q # ® H is gewoon de operator
W ® 1. De notie van een multiplicatieve unitaire (en van bijhorende regu-
lariteitseisen) werd ontwikkeld in het artikel [4].

Voor elke von Neumann algebraische kwantumgroep is er canoniek zo een
multiplicatieve unitaire W beschikbaar.

Definitie N.3.10. Zij (M, Aps) een von Neumann algebraische kwantum-
groep met links invariant nsf gewicht ppr. Dan bestaat er een unieke unitaire
Wi € M ® B(ZL?(M)), de links reguliere corepresentatie genaamd, zodat
voor elke w € B(ZL*(M))x en x € N, geldt, dat (w® 1)Apn(x) € N, en

(W) (Wi Apy () = Agy, (W @ 1) A()).

Deze unitaire Wy is dan een multiplicatieve unitaire.
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We merken op dat het tamelijk gemakkelijk is om aan te tonen dat Wy,
een isometrie is die aan de pentagon-gelijkheid voldoet. Wat helemaal niet
triviaal is, is het bewijs van de surjectiviteit van Wj,. Dit vormt één van de
mooie maar heel technische constructies uit [56].

Met behulp van de multiplicatieve unitaire kan men dan een dualiteitsthe-
orie voor von Neumann algebraische kwantumgroepen ontwikkelen. Hierbij
definieert men de onderliggende von Neumann algebra M als de o-zwakke
sluiting van de verzameling {(w®:) (W) | w € M, } (waarvan men kan tonen
dat het inderdaad een von Neumann algebra vormt). De covermenigvuldi-
ging wordt gedefinieerd met behulp van Wys: noteren we Wi = YWy Y,
dan stellen we

Agp(z) = WH1@2)Wi; voor alle z € M.

We vermelden dat er ook een rechts reguliere corepresentatie Vi van (M, Apy)
bestaat. Dit is dan een multiplicatieve unitaire die in M’ ® M gelegen is.

Spreekt men over groepen, dan moet men het ook over hun bijhorende acties
en representaties hebben. In [85] wordt in detail besproken hoe men een
theorie van coacties!! van von Neumann algebraische kwantumgroepen op
von Neumann algebra’s kan ontwikkelen.

Definitie N.3.11. Zij N een von Neumann algebra, en (M, Apr) een von
Neumann algebraische kwantumgroep. Fen rechtse coactie van M op N
bestaat uit een trouw mormaal unitaal *-homomorfisme o : N — N & M,
zodat

(a®v)a=(L®Ay)a.

Er bestaan ook natuurlijke, niet-commutatieve veralgemeningen van ‘ac-
ties met speciale eigenschappen’. De volgende definitie verschaft twee voor-
beelden hiervan.

Definitie N.3.12. Zij N een von Neumann algebra, M een von Neumann
algebraische kwantumgroep, en « een rechtse coactie van M op N.

Men noemt « ergodisch, als enkel de scalaire veelvouden van de eenheid in
N wvoldoen aan de vergelijking

a(r) =xz®1.

"Tn [85] wordt over acties gesproken - wij zullen het hebben over coacties.
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Men noemt « integreerbaar als er een o-zwak dicht deel A1, van N bestaat,
zodat (w @ t)a(x) € My, voor alle we Ny en x € Mr,,.

Aan elke coactie kan verder ook een nieuwe von Neumann algebra geasso-
cieerd worden, welke men het gekruist product noemt.

Definitie N.3.13. Zij N een von Neumann algebra, M een von Neumann

algebraische kwantumgroep, en a een coactie van M op N. Dan noemt men

de bicommutant van de verzameling van operatoren o(N) v (1 ® M') op

LAHN)RL?(M) het gekruist product van N met M. We noteren deze von

Neumann algebra als N x M, of gewoon N x M als o duidelijk is wit de
[e%

context.

Nu voeren we het begrip unitaire corepresentatie voor een von Neumann
algebraische kwantumgroep in.

Definitie N.3.14. Zij M een von Neumann algebraische kwantumgroep, en
A een Hilbertruimte. Een (rechtse) unitaire corepresentatie van M op ¢
is een unitaire U € B() @ M die voldoet aan de vergelijking

(L ® A)U = Uy2U13.

De volgende stellingen zijn twee van de mooie resultaten uit [85]. De eerste
is een veralgemening van een stelling van Haagerup.

Stelling N.3.15. Zij N een von Neumann algebra, M een von Neumann
algebraische kwantumgroep, en o een coactie van M op N. Dan kan men
canoniek een unitaire rechtse corepresentatie U op £*(N) construeren die
de coactie implementeert:

Ux@®1)U" = a(r)
voor alle x € N.

Men noemt U dan de unitaire implementatie van a.

Stelling N.3.16. Zij N een von Neumann algebra, M een von Neumann
algebraische kwantumgroep, en o een coactie van M op N. Zij U de uni-
taire tmplementatie van . Dan is a integreerbaar als en slechts als er een
normaal *-homomorfisme py : N x M — B(ZL?(N)) bestaat zodat

pala(z)) =z voor alle z € N,

Pa(1®(t®@w) (V) = (L ®w)(U) voor alle w € M.
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In het geval a een integreerbare coactie is, noemen we het homomorfisme
po uit deze stelling het Galois homomorfisme voor o Beperken we p, tot
M ~ M~ 1 ® M M € N x M, dan bekomen we een normale linkse representatie
7l van M M op Z%(N), en bijgevolg ook een normale rechtse representatie
0, van M op Z?(N) via de formule ga(ac) = 7o (S5 I 57)-

We kunnen na deze voorbereidingen nu de definitie geven van een Galois
object in de context van von Neumann algebraische kwantumgroepen.

Definitie N.3.17. Zij N een von Neumann algebra, M een von Neumann
algebraische kwantumgroep, en o een integreerbare coactie van M op N. We
noemen de coactie Galois als het Galois homomorfisme trouw (i.e. injectief)
is. We noemen (N, «) een Galois object indien a zowel Galois als ergodisch
is.

In het zevende hoofdstuk van onze thesis bestuderen we dan in detail de
verdere structuur van Galois objecten. De bekomen resultaten zijn opper-
vlakkig gelijkend aan deze die voor de algebraische kwantumgroepen behaald
werden, maar vergen wat meer technische finesse.

Eerst merken we op dat een Galois object (IV,a) canoniek van een nsf
gewicht voorzien kan worden: voor x € MYJ“; bestaat namelijk, wegens er-
godiciteit, een positief getal pn(x) zodat

e () = pu((w®)(a(z)))

voor elke normale toestand w op N. Als we verder oy (x) = +00 definiéren
voor x € N +\M:,Jfa, dan wordt pyn een nsf gewicht op N, waarbij het semi-
finiet zijn volgt uit het integreerbaar zijn van de coactie.

We kunnen voor een Galois object een analytische variant van de Galois
afbeelding voor algebraische Galois objecten maken. Dit betreft nu een
unitaire afbeelding G van 22 (N)®.2?(N) naar £%(M)®.2>(N), de Galois
unitaire genaamd, uniek bepaald door de formule

(L@wW)(G)Apy (2) = Ay, (w @ t)an(2))

voor alle z € A, en w € B(Z?(N)).
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Vervolgens maken we een één-parametergroep TtN van *-automorfismes op

het Galois object, die dan dezelfde rol speelt als de schaalgroep voor een
von Neumann algebraische kwantumgroep, en die we dus dezelfde naam
zullen toebedelen. Deze één-parametergroep wordt als volgt geconstrueerd.
Zij 6377 het modulaire element van de duale kwantumgroep M. Dan wordt

aangetoond dat ga(é%}’l) en Vf}N commuteren. Bijgevolg geeft dit ons een

één-parametergroep van unitairen Py = é\a(é%})vg]v op L?(N). Deze im-

plementeren dan de schaalgroep TtN op N:
¥ (x) = PiaPy" voor x € N.

(Deze constructie wordt in feite reeds ingevoerd in het zesde hoofdstuk van
onze thesis, in de algemenere setting van integreerbare acties. De schaal-
groep is daar echter niet canoniek, omdat er geen canoniek gewicht oy is.)

We kunnen ook een modulair element dx aan een Galois object associéren.
We gaan de constructie ervan hier niet in detail verder bespreken, maar
geven enkel de essentiéle stappen aan. Eerst wordt de modulaire operator
Sy van M overgebracht op Z2(N) ® Z2(N) via de Galois unitaire G. We
tonen dan aan dat de geassocieerde één-parametergroep van automorfismes
op B(Z?(N)® Z?%(N)) zich beperkt tot een één-parametergroep van auto-
morfismes op B(Z?(N)) = 1Q B(.L?(N)). Maar zo een één-parametergroep
wordt noodzakelijk geimplementeerd door een unitaire één-parametergroep
op Z?(N). De voortbrenger hiervan levert dan het modulaire element dy,
die op een scalaire na bepaald zal zijn.

We tonen tenslotte aan dat de operatoren Py en Oy(dy) sterk commuteren,
waarbij @y de canonieke rechtse representatie is van N op .Z2(N), gegeven
door Oy (x) = Jya*Jy. Bijgevolg kunnen we een één-parametergroep

V% = PNOn (35"

definiéren, die in het vervolg de belangrijkste rol zal spelen: het blijkt
namelijk dat
R PN /
V%Oa(x) J(; = 0a(of™)

voor alle z € M , zodat we StellingAN.?).ﬁ kunnen toepassen en zo op canon-
ieke wijze een nsf gewicht ¢ op P := 0,(M)" bekomen.

We gaan nu over tot de reflectietechniek in de context van Galois objecten
voor von Neumann algebraische kwantumgroepen: we construeren op P de
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structuur van een von Neumann algebraische kwantumgroep. De coverme-
nigvuldiging wordt geimplementeerd door G: de operatie

Aﬁ:lg—>]3®]3:x—>é*(l®x)é

is goedgedefinieerd en coassociatief. Het blijkt verder ook voldoende te zijn
om een links invariant nsf gewicht op P te vinden, omdat we eenvoudig een
‘unitaire antipode’ op P kunnen maken via de formule

Rp(z) = Jnz*JIn voor z € P.

Maar dit links invariante gewicht blijkt nu niets anders te zijn dan het
gewicht ¢z dat in de vorige paragraaf geconstrueerd werd.

In de verdere secties van het zevende hoofdstuk leggen we het verband
tussen Galois objecten en de theorie van de von Neumann algebraische
kwantumgroepoides (measured quantum groupoids), ontwikkeld in [59]. Zij
namelijk N opnieuw een rechts Galois object voor een von Neumann alge-
braische kwantumgroep M. Zij N de verzameling van begrensde operatoren
z: L2(M) - ZL%(N) die voldoen aan

r05(y) = 5a(y):c voor alle y € M,

Waarbu 05 de natuurhjke rechtse representatie van M op L?(M) is. Zij

O=N * en verder P als in de Vorlge paragraaf. Dan kunnen we de von

2
Neumann algebra Q = g ]]TVJ\ ) vormen, werkende op ( 52((]\4)) )

Deze is op natuurlijke wijze een von Neumann link algebra. We weten verder
dat op P en M een covermenigvuldiging aanwezig is. Maar we kunnen ook
een covermenigvuldiging N — N ® N maken, gegeven door de formule

Ag(r) = G*(1 ® )W, voor alle z € M,

waarbij Wy de links reguliere corepresentatie voor M is. Analoog kan een

covermenigvuldiging 0 - 0®0 gevormd worden, en deze kunnen dan allen
gebundeld worden in een covermenigvuldiging A 4 o Q Q ® Q, waarbij we
echter opmerken dat deze laatste afbeelding niet eenheidsbewarend zal zijn.
Het koppel (@, A@) blijkt dan, na een kleine aanpassing die in hoofdstuk 11
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uitgewerkt wordt, binnen het formalisme van [58] te passen. We kunnen de
koppels (Q, A@) die optreden ook abstract karakteriseren, en noemen deze
von Neumann algebraische link kwantum groepoides.

Ook het duale concept, namelijk dit van een von Neumann algebraische
co-link kwantumgroepoide, kan abstract gekarakteriseerd worden. Ditmaal
betreft het een directe som

Q=P®OON®M

van von Neumann algebra’s, voorzien van een covermenigvuldiging Aq :
Q — Q®Q, z6 dat, als we POODN @M als Q11 @ Q21 P Q12D Q22 schri-
jven, Ag onder andere voldoet aan Ag(Qi;) S 2%:1 Qir ® Qpj. Deze laat-
ste conditie is duaal aan de matrix-vermenigvuldiging van 2-bij-2-matrices.
Schrijven we Afj voor de covermenigvuldiging Ag met bron beperkt tot
Qi; en beeld tot Q;; ® Qk;, dan vindt men dat voor von Neumann alge-
braische co-link kwantumgroepoides het koppel (M, A2,) een von Neumann
algebraische kwantumgroepoide is, en (N, A2,) een rechts Galois object voor
M. Omgekeerd tonen we aan dat elk rechts Galois object vervolledigd kan
worden tot een von Neumann algebraische co-link kwantumgroepoide, es-
sentieel door de constructie uit de vorige paragraaf toe te passen, en dit dan
te dualiseren, gebruik makende van de theorie uit [59].

Als nu twee von Neumann algebraische kwantumgroepen de hoeken uit-
maken van een von Neumann algebraische link kwantum groepoide, dan
noemen we ze comonoidaal W*-Morita equivalent, en hun duales monoidaal
W*-co-Morita equivalent. We tonen natuurlijk aan in de thesis dat dit werke-
lijk een equivalentie-relatie bepaald. Dit wordt bewerkstelligd door te tonen
dat er een natuurlijke compositie van von Neumann algebraische (co-)link
kwantum groepoides voorhanden is.

In een laatste sectie tonen we dan aan dat er ook een geassocieerde C*-
algebraische theorie is: gebruik makend van de resultaten die in het elfde
hoofdstuk behaald worden, tonen we dat comonoidale W*-Morita equi-
valentie tussen von Neumann algebraische kwantumgroepen leidt tot een
‘comonoidale C*-Morita equivalentie’ tussen de geassocieerde C*-algebraische
kwantumgroepen, zowel op gereduceerd als op universeel vlak. Bovendien
kan ook het Galois object IV zelf voorzien worden van C*-algebraische struc-
turen, namelijk een gereduceerde C*-algebra B € N, en een universele C*-
algebra B* — B.
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N.4 Constructiemethodes

Ons achtste hoofdstuk behandelt vier natuurlijke constructiemethodes. Om
deze uit te kunnen leggen, moeten we eerst het concept ‘gesloten kwantum
deelgroep’ introduceren, dat in onze thesis in het zesde hoofdstuk aan bod
komt.

Definitie N.4.1. Zij (M, A) een von Neumann algebraische kwantumgroep.
We noemen een koppel (M, F') een gesloten kwantum deelgroep van M als
(M, A1) een von Neumann algebraische kwantumgroep is, en F : My — M
een unitaal getrouw normaal *-homomorfisme zodat (F Q@ F)o A = Ao F.

Vaak zullen we M; gewoon identificeren met zijn beeld onder F, en de no-
tatie F' weglaten.

Ons eerste resultaat zegt dan dat een Galois coactie van een von Neumann
algebraische kwantumgroep M op een von Neumann algebra N beperkt kan
worden tot een Galois coactie van een von Neumann algebraische kwantum-
groep M1, gegeven dat My € M een gesloten kwantum deelgroep is. Een
tweede resultaat zegt dat we Galois objecten kunnen reduceren: nu is eerder
M; € M een gesloten kwantumdeelgroep, en we maken vanuit een Galois
object N voor M een Galois object Ny voor M;. We tonen bovendien aan
dat onder de reflectieconstructie, toegepast op de Galois objecten N en Ny,
de inclusie M; € M overgestuurd wordt op een inclusie P; € P van kwan-
tumgroepen.

Het derde resultaat uit dit hoofdstuk toont aan dat er een één-één-verband
is tussen coacties van monoidaal W*-co-Morita equivalente von Neumann
algebraische kwantumgroepen, en dat onder deze bijectie het ergodisch, in-
tegreerbaar en Galois zijn van een coactie bewaard blijft. Een vierde resul-
taat tenslotte toont dat als M; € M een gesloten kwantum deelgroep is,
we een Galois object N1 voor M; kunnen induceren tot een Galois object
N voor M, en dat de reflecties langsheen Ny en N leiden tot een inclusie
P} € P van von Neumann algebraische kwantumgroepen.

N.5 Toepassingen: 2-cocykels en projectieve rep-
resentaties

In de volgende twee hoofdstukken van onze thesis beschouwen we enkele
toepassingen. In het negende hoofdstuk bestuderen we het speciale geval
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van ‘cleft’ Galois objecten: dit betreft Galois objecten geconstrueerd met
behulp van 2-cocykels.

Definitie N.5.1. Zij (M, A) een von Neumann algebraische kwantumgroep.
FEen unitaire 2-cocykel voor M is een unitair element Q) € M@QM dat voldoet
aan de vergelijking

QODNA®)(Q) = (102 (®A)(Q).

Als nu zo’n 2-cocykel gegeven is, kunnen we gemakkelijk een nieuwe cover-
menigvuldiging op M construeren, namelijk

Aq(z) = QA(x)Q*.

De 2-cocykel identiteit laat meteen zien dat dit een coassociatieve cover-
menigvuldiging oplevert. Het is evenwel niet duidelijk of dit opnieuw een
von Neumann algebraische kwantumgroep zal opleveren, i.e. of er invariante
gewichten beschikbaar zijn. Men kan echter aan € een Galois object voor
M associéren, en (M, Agq) blijkt dan niets anders te zijn dan de von Neu-
mann algebraische kwantumgroep die bekomen wordt door M te reflecteren
langsheen dit Galois object. Als ‘toemaatje’ classificeren we ook de Galois
objecten voor ‘directe producten van von Neumann algebraische kwantum-
groepen’ aan de hand van de Galois objecten voor de afzonderlijke factoren
en de bikarakters tussen de twee factoren. In het bijzonder kan dit toegepast
worden op de theorie van Galois objecten voor (veralgemeende) ‘Drinfel’d
doubles’ van kwantumgroepen.

In het tiende hoofdstuk voeren we het begrip ‘projectieve (co-)representatie’
voor von Neumann algebraische kwantumgroepen in. In de klassieke theorie
van lokaal compacte groepen is er namelijk een nauw verband tussen 2-
cocykels op de groep enerzijds, en acties van de groep op type I-factoren
anderzijds. Dit gaat als volgt: zij & een lokaal compacte groep met aftelbare
basis, en J# een separabele Hilbertruimte. Als o : & — Aut(B()) een
continu homomorfisme is, met Aut(B(.%) voorzien van de puntsgewijs o-
zwakke topologie, dan kan men voor elke g € & een unitaire u, op ¢
vinden zodat ay(z) = ugzuy voor elke z € B(J). Bovendien kan men er
voor zorgen dat g — u, meetbaar is. Er bestaat dan een meetbare functie

Q:®x® — S C,met S de cirkelgroep, zodat
Q(g’ h)ugh = UgUp,

voor alle g, h € &. We kunnen € interpreteren als een element van £ (&)®
ZL*(®), en dit is dan precies een 2-cocykel voor de von Neumann alge-
braische ‘kwantum’-groep £ (&). (Merk op dat Q niet eenduidig bepaald
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wordt door «. Zijn cohomologieklasse is dit echter wel.) We noemen g — u,
dan een Q-representatie, en, als € niet van tevoren gespecifieerd is, een pro-
jectieve representatie van &. Anderzijds levert elke projectieve representatie
g — uy gemakkelijk een actie op B(J) op, door ay(z) = ugzu; te stellen.

In de kwantumcontext gaat het verband tussen coacties op type I factoren
en projectieve corepresentaties nog steeds op, mits men 2-cocykels vervangt
door de meer algemene Galois objecten. Het begrip projectieve corepresen-
tatie moet nu als volgt geinterpreteerd worden.

Definitie N.5.2. Zij (M, A) een von Neumann algebraische kwantumgroep,
en (N, a) een Galois object voor M. Een projectieve linkse N -corepresentatie
van M op een Hilbertruimte S is een unitair element U € N® B(s) dat
voldoet aan

(AJV ® 1)U = Ui3Uss.

Er blijkt dan inderdaad te gelden dat, als een coactie van een von Neu-
mann algebraische kwantumgroep M op een factor B(J) gegeven is, we
hier een Galois object N voor M aan kunnen associéren, samen met een
projectieve linkse N-corepresentatie op #°. We tonen verder aan dat pro-
jectieve N-corepresentaties in één-één-verband gebracht kunnen worden met
niet-ontaarde rechtse *-representaties van B", de universele C*-algebra ge-
associeerd aan N.

We buiten dit verband dan uit in het specifieke geval dat M een compacte
kwantumgroep is, i.e. voorzien is van eindige invariante gewichten (zodat

ei(1) =1).

In het klassieke geval van compacte groepen kan aangetoond worden dat irre-
ducibele projectieve representaties noodzakelijk eindig dimensionaal zijn. In
het kwantumgeval blijkt dit niet langer waar, en we geven een expliciet voor-
beeld van dit fenomeen (me aangereikt door Stefaan Vaes). Dit zorgt voor
het volgende merkwaardige fenomeen: als men het Galois object beschouwd,
geassocieerd aan een oneindig dimensionale irreducibele projectieve corep-
resentatie van een compacte kwantumgroep, dan zal de comonoidaal W*-
Morita equivalente von Neumann algebraische kwantumgroep, geassocieerd
aan dit Galois object, niet langer compact zijn. Omdat we er ook voor
kunnen zorgen dat het bijhorende Galois object cleft is, bekomen we het
volgende merkwaardige resultaat: er bestaat een compacte kwantumgroep,
voorzien van een 2-cocykel €2, zodat de kwantumgroep met het Q-getwiste
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coproduct niet langer compact is.

N.6 von Neumann algebraische kwantumgroepoi-
des met eindige basis

Het elfde hoofdstuk van onze thesis tenslotte staat inhoudelijk wat apart van
de rest van de thesis. Het betreft hier een tamelijk summiere uiteenzetting
van de theorie van von Neumann algebraische kwantum groepoides met een
eindige basis. De belangrijkste resultaten betreffen hier het construeren van
geassocieerde gereduceerde en universele C*-algebraische structuren. De
methodes zijn sterk geinspireerd (en gelijkend aan) deze uit de artikels [105]
en [54]. De reden tot het behandelen van deze kwesties is het feit dat dit toe-
laat om de C*-algebraische resultaten omtrent von Neumann algebraische
link en co-link algebra’s samen te behandelen.
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