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Abstract

We show that the family of Podleś spheres is complete under equivariant Morita equivalence (with
respect to the action of quantum SUp2q), and determine the associated orbits. We also give explicit
formulas for the actions which are equivariantly Morita equivalent with the quantum projective plane.
In both cases, the computations are made by examining the localized spectral decomposition of a gen-
eralized Casimir element.
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Introduction

This paper is concerned with SUqp2q, the quantum SUp2q group, at real values 0   q   1 ([18]). In
[14], the SUqp2q-homogeneous spaces were classified which have the same spectral decomposition as
the ordinary action of SUp2q on the 2-sphere (and whose spin 1-part generates the algebra). They
form a continuous one-parameter-family S2

qc, called Podleś spheres, and are indexed by a number
c P r0,�8s. In this paper, we give a classification with respect to a weaker equivalence relation,
namely equivariant Morita equivalence. The notation we follow in the Introduction will be the one of
[14]. (In the paper itself we will use a different notational convention which is more convenient for
our purposes).

Theorem 0.1. Write
c : r0,�8s Ñ r0,�8s : xÑ pq�x � qxq�2.

Then
S2
qcpxq �

SUqp2q-Morita

equiv.

S2
qcpyq � Dm P Z with y � |x�m|.

Moreover, any quantum homogeneous space X of SUqp2q which is equivariantly Morita equivalent with
a Podleś sphere is itself a Podleś sphere.�Supported in part by the ERC Advanced Grant 227458 OACFT “Operator Algebras and Conformal Field Theory”
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Remark: The moreover-part follows from the results of [17] and the classification in [14], but we will
give an independent proof.

For the equatorial Podleś sphere S2
q8, there exists an SUqp2q-equivariant Z2-symmetry, which allows

us to form the quantum projective plane RP 2
q as an SUqp2q-homogeneous space (see e.g. [6]). The fol-

lowing theorem provides the classification of quantum homogeneous spaces which are SUqp2q-Morita
equivalent with RP 2

q .

Theorem 0.2. For l P 1
2
N0, let Bl be the unital �-algebra generated by elements X,Z, Y and 4l � 1

elements As, where s P t�2l,�2l � 1, . . . , 2l � 1, 2lu, satisfying the following relations:$&% Y � � X

Z� � Z

A�
s � p�1qsA�s,"

XZ � q2ZX

AsZ � �q�2sZAs,$''&''% XAs � �As�1p1� q2s�2l�1Zq for s ¡ �2l
XA�2l � �A�2lX

X�As � �As�1p1� q2s�2l�1Zq for s   2l
X�A2l � �A2lX

�
and$''''&''''% "

X�X � p1� q2l�1Zqp1� q�2l�1Zq
XX� � p1� q2l�1Zqp1� q�2l�1Zq"
AsAs1 � p�1qsX�ps�s1qpq2s1�2l�1Z; q2qs�2lp�q�2l�1Z; q2qs1�2l for s� s1 ¤ 0� p�1qspX�qs�s1pq2s1�2l�1Z; q2q2l�s1p�q2s�2s1�2l�1Z; q2q2l�s for s� s1 ¥ 0.

In particular, the unital �-algebra AlgpX,Z, Y q generated by X,Z, Y is an isomorphic copy of the
Podleś sphere at parameter cp2lq.
Then we can define on Bl an ergodic action of SUqp2q which agrees with the usual action on the copy
AlgpX,Z, Y q of the Podleś sphere, and such that

θ2l � pq 1

2
sps�1q pq4l�2s�2; q2q1{2s�2lpq2; q2q1{2s�2l

Asqs P Bl b C
4l�1

is a π2l-eigenvector (where πr for r P 1
2
N denotes the spin r-representation of SUqp2q).

If we denote by the formal symbol Xl the quantum homogeneous space associated with the action on
Bl, then a quantum homogeneous space X of SUqp2q is equivariantly Morita equivalent with RP 2

q iff
it is isomorphic to RP 2

q or one of the Xl.

Classically (i.e. for q � 1), the Bl correspond to the inductions to SUp2q of the actions Adpπlq of
D�8, where D�8 � SUp2q is the double cover of the infinite dihedral group S1 � Z2, and with the πl
denoting its 2-dimensional irreducible representations. Note that the Bl have a natural equivariant
Z2-gradation.
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To prove these theorems, we will proceed as follows. In [2], we introduced a �-algebra Uqp�,�q,
equipped with a right module �-algebra structure of Uqpsup2qq, the quantum universal enveloping�-algebra of sup2q. We showed that the Podleś spheres (for c � 0) can be realized as equivariant
sub-quotients of this �-algebra, by evaluation of a certain central and self-adjoint Casimir element.
But as Uqp�,�q also has a compatible co-module �-algebra structure for Uqpsup2qq (namely, a Yetter-
Drinfel’d structure), one can compose representations of Uqp�,�q with ordinary representations of
Uqpsup2qq, and split these up into irreducibles (a classical method). From applying such a composition
to the mentioned Casimir element, the decomposition can easily be deduced by a (trivial) spectral
decomposition. From such a procedure we will then be able to prove Theorem 0.1. Also Theorem 0.2
will be proved in a similar fashion.

Let us remark that by [17], the computation of the orbit under G-equivariant Morita equivalence for
an ergodic action α on a unital C�-algebra B can be found by studying the representation theory of
B�G. From this observation, it follows that our work will be directly connected with [16], where the
infinitesimal version PolpS2

qcq � Uqpsup2qq is studied from a representation theoretic viewpoint. We
will at the appropriate places remark where we make contact with [16], but on the whole our approach
is a little different as we tend to work locally.

The contents of this paper are as follows.

After a section containing notational conventions, our first section introduces those quantum group
concepts we will need in the paper. Nothing in this section is original, but we provide short proofs
for certain statements nevertheless. In the second section, we prove Theorem 0.1, and as a corollary
compute the equivariant Picard group for the Podleś spheres. In the third section, we prove Theorem
0.2.

Notations

In the remainder of the article, q will denote a real number strictly between 0 and 1. We then write

λ � pq � q�1q�1.

We will also use a different parametrization τ of r�8,�8s, namely

τpxq � q�x � qx for x P r�8,�8s.
All our vector spaces will be over the ground field C. For V a vector space, we denote LpV q for
the space of linear endomorphisms of V , and by V � the space of linear functionals. If V is endowed
with a Hilbert space structure H , we denote BpH q for the �-algebra of bounded operators. When
we have a basis ei of a vector space V , parametrized by a set I, then ei is interpreted to be zero if i R I.

By d, we will denote the algebraic tensor product of two vector spaces or algebras over C. By b,
we will denote the tensor product between Hilbert spaces, or the minimal tensor product between
C�-algebras. We will also use the leg notation for tensor products: for example, if we have spaces
V1, V2, V3, and X an operator in LpV1d V3q, we denote by X13 the operator on V1d V2d V3 acting as
X on the first and third component, and as the identity on the second component.

For r P NY t8u and a P C, we denote by pa; qqr the q-factorialpa; qqr � r�1¹
k�0

p1� qkaq.
3



1 Preliminaries

1.1 Quantum groups

We will freely use the language of Hopf algebras, Hopf �-algebras, and C�-algebraic compact quantum
groups (see e.g. [9]). For a Hopf algebra pH,∆q, we will use Sweedler notation in the form

∆phq � hp1q b hp2q for h P H.

A C�-algebraic compact quantum group will always be written in the form pCpGq,∆q, and we then
refer to the symbol G as ‘the compact quantum group’. The associated Hopf �-algebra is written
PolpGq. Except for the preliminary section, we will only be interested in these objects for one partic-
ular quantum group, namely G � SUqp2q.
Important remark: As to avoid overloading certain statements, we will in the remainder of this section
always assume that G is co-amenable, so that CpGq is uniquely determined by PolpGq.
The following easy lemma will be needed at a certain point. Let H be an algebra, and V a right
H-module. We then denote by Vfin � V the submodule of all locally finite elements, i.e.

Vfin � tv P V | tv � h | h P Hu is finite-dimensionalu.
Lemma 1.1. Let pH,∆q be a Hopf algebra, and let V and W be two right H-modules. ThenpV dW qfin � Vfin dWfin.

We also make the following remark. Let pH,∆q be a Hopf (�-)algebra, and let A be a right module
(�-)algebra for pH,∆q. (The compatibility with the �-structure means that pa � hq� � a� � Sphq�).
Let V be a finite-dimensional vector space (resp. Hilbert space) with a left H-module structure by a
(�-preserving) unital homomorphism π : H Ñ LpV q. Then AdLpV q can be made into a right module
(�-)algebra by the formula pab xq � h :� pa � hp2qq b πpSphp1qqqxπphp3qq.
If we are in the following situation:

• pK,∆q is Hopf (�-)algebra paired with pH,∆q by a map ιH : H Ñ K� (with the compatibility

ιHph�qpkq � ιHphqpSpkq�q
in the �-case),

• if the module (�-)algebra structure on A is induced from a left comodule (�-)algebra structure
of K on A, and

• if π is induced from a (unitary) corepresentation U P K d LpV q,
then pab xq � h � pιHphq b ιb ιqpU�1

13 pαpaq b xqU13q.
Also, in the general case, the module Ad LpV q is isomorphic to V � dAd V with the tensor module
structure (where V now carries the right H-module structure v �h :� πpSphqqv, and with V � endowed
with the right module structure ω � h :� ωpπphq � q).
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1.2 Coactions

We begin with the following remark on terminology. We will use the equivalent notions of (co)module
algebra and (co)action, whenever one of them is more convenient. In the C�-algebra context, we will
always assume that the co-unit condition is satisfied, so that the coactions are continuous.

Our next remarks concern ergodic coactions. We call a coaction α on a unital algebra B ergodic if the
identity αpbq � bb 1 for some b P B implies that b P C1. If α is an ergodic coaction of a C�-algebraic
compact quantum group pCpGq,∆q on a unital C�-algebra B, we will write B � CpXq for some
formal symbol X, and call it a ‘G-homogeneous space’. We then denote by PolpXq the linear span
of the finite-dimensional spectral subspaces of CpXq. It is a �-algebra carrying a natural coaction of
PolpGq by restricting α. One also has a (unique) invariant (and faithful) state ϕX on CpXq, obtained
by integrating out the coaction (so ϕXpxq1CpXq � pι b ϕGqαpxq for all x P CpXq, where ϕG is the
invariant state on CpGq). Note that CpXq is completely determined by PolpXq, by our co-amenability
assumption on G (see [11], Proposition 3.8).

The following result by F. Boca ([1]) is fundamental.

Theorem 1.2. Let X be a homogeneous space for a compact quantum group G. Then any irreducible
representation of G appears in CpXq with only finite multiplicity.

The following lemma will also be used at some point.

Lemma 1.3. Let G be a compact quantum group, H a Hilbert space, and let B � BpH q be a (not
necessarily closed) unital sub-�-algebra with a coaction αB by PolpGq. Assume that there exists a
normal state ω in BpH q� whose restriction to B is faithful and αB-invariant. Then if A � B is a
unital sub-�-algebra for which

• αB restricts to an ergodic coaction of PolpGq on A, and

• the weak closures of A and B coincide,

then A � B.

Proof. Suppose that B � A. We may then take an irreducible representation π of G and a non-zero
element x P Bπ, the spectral subspace for π in B, such that x R A. As Aπ is finite-dimensional by
Boca’s theorem, we may moreover assume that x is orthogonal to Aπ, and hence to A (where A is
equipped with the pre-Hilbert space structure xa1, ay :� ωpa�a1q). But as ω is normal, we would then
get ωpxyq � 0 for all y P A2 � B2. Clearly this gives a contradiction with the faithfulness of ω.

1.3 Morita equivalence for coactions

Let αi be left coactions of CpGq on unital C�-algebras Bi. One says the Bi are G-Morita equivalent
if there exists a unital C�-algebra E with a left coaction α, together with a G-invariant self-adjoint
projection e, such that, denoting e1 � e and e2 � 1�e, we have that Ee1E and Ee2E are norm-dense
in E, and eiEei � Bi by a G-covariant isomorphism. Alternatively, it is more common to define
the Bi to be G-Morita equivalent if there exists an equivariant B1-B2-equivalence Hilbert bimodule
(see e.g. the remark after Theorem 2.5 in [13]). The equivalence of the latter definition with the
above ‘linking algebra’ picture is well-known and easily proven. It is also easily shown that G-Morita
equivalence is indeed an equivalence relation.

If the αi are ergodic, and we write Bi � CpXiq, we will also call the Xi themselves G-Morita equivalent.

The following results can be deduced from the ones in section 4 of [17].
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Proposition 1.4. Let the Xi be two G-homogeneous quantum spaces. The following are equivalent.

• The Xi are G-Morita equivalent.

• There exists a finite-dimensional unitary corepresentation U of CpGq on a Hilbert space H and
a G-invariant projection p P CpX2q bBpH q such that

CpX1q � ppCpX2q bBpH qqp
by a G-equivariant isomorphism.

Here CpX2q bBpH q is again equipped with the coaction xÑ U�
13pαb ιqpxqU13.

To prove ñ, take a G-equivariant equivalence Hilbert bimodule pE , αE q between CpX1q and CpX2q,
a suitable unitary left corepresentation U of CpGq and non-zero elements xi P E such that αE pxiq �°

j U
�
ij b xj. Then using the ergodicity of CpX1q, one shows that (possibly up to a scalar) the map

E Ñ CpX2q bHU : ξ Ñ
i̧

xξ, ξiyCpX2q b ei

is a G-equivariant isometry between CpX2q-Hilbert modules, where the range is equipped with the
coaction xÑ U�

13pαb ιqpxq. To prove ð, the essential point is that for any G-invariant projection p,
the Hilbert module ppCpX2q b H q is still full (cf. [17], Lemma 4.5). This will follow from the fact
that pι b ωqppq P CpGq is invariant for a well-chosen faithful state ω P BpH q� (namely an invariant
functional for the action xÑ Up1b xqU� by pPolpGq,∆opq).
The following lemma will allow us to determine Morita equivalences by an inductive process.

Lemma 1.5. Let π1, . . . , πn be a generating set of irreducible representations of a compact quantum
group G (i.e. any irreducible representation of G is contained in some power of `πi). Let X1 and X2

be two G-homogeneous spaces. Then X1 and X2 are Morita equivalent iff there exists a finite set of
G-homogeneous spaces Y1, . . .Ym with

• Y1 � X1 and Ym � X2,

• for each k P t1, 2, . . . ,m�1u, there exists an i P t1, 2, . . . nu and a minimal G-invariant projection
p P CpYkq bBpH q such that

CpYk�1q � ppCpYkq bBpHπi
qqp.

The proof is based on the previous proposition and two basic observations:

• If
CpY1q � p1pCpY2q bBpHπ1

qqp1 and CpY2q � p2pCpY3q bBpHπ2
qqp2,

then with p3 � p1pp2 b 1q � pp2 b 1qp1 we have

CpY1q � p3pCpY3q bBpHπ2bπ1
qqp3,

and

• If π1 � π2 with corresponding projection p : Hπ2
Ñ Hπ1

, then

CpYq bBpHπ1
q � p1b pqpCpYq bBpHπ2

qqp1 b pq.
Note that the above two results also (and more naturally) apply to the associated irreducible equiv-
ariant CpXq-Hilbert modules, i.e. any irreducible equivariant Hilbert CpXq-module appears as a com-
ponent in some CpXq bHπ for π a finite-dimensional representation.
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Proposition 1.6. Let G be a compact quantum group, and H a quantum subgroup. Then we can
form the G-homogeneous quantum space X � HzG. Any G-Morita equivalent homogeneous quantum
space is then obtained by taking an irreducible unitary corepresentation U of CpHq on a Hilbert space
H , and inducing the associated H-action on BpH q to G.

One can use for example the isomorphisms KG
0 pCpHzGqq � K0pCpHzGq �Gq � K0pC�pHqq.

1.4 Galois objects

Definition 1.7 ([15]). Let pH,∆q be a Hopf (�-)algebra, A a unital (�-)algebra, and α a right coaction
of pH,∆q on A. Denote B � ta P A | αpaq � ab 1u, the fixed point algebra. One says α is Galois if
the Galois map

G : Ad
B
AÑ AdH : ab a1 Ñ pab 1qαpa1q

is bijective.

One says pA,αq is a Galois object if α is ergodic (i.e. B � C).

For a Galois object, we write S for the canonical anti-isomorphism Aop Ñ A : aop Ñ a, and denote

hr1s b hr2s :� pS�1 b ιqpG�1p1b hqq P Aop dA.

The application hÑ hr1s bhr2s is then a unital homomorphism. As for H itself, one can make A into
a right H-module (�-)algebra by means of the Miyashita-Ulbrich (or adjoint) action

a� h :� Sphr1sqahr2s.
Then pA,α,�q is a right Yetter-Drinfel’d module (see [3], or Lemma 2.9 of [15]).

A trivial example of a Galois object is given by (an isomorphic copy of) the Hopf (�-)algebra itself,
with the coaction given by the comultiplication. In fact, we will be mainly concerned with a particular
Galois object for a Hopf �-algebra which becomes trivial when forgetting the �-structure.
We record the following fact for later use.

Lemma 1.8. Let pA,αq be a Galois object for the Hopf �-algebra pH,∆q.
1. Let πB : A Ñ B be a unital �-homomorphism. Then there exists a right H-module �-algebra

structure on B, determined by b� h � πBpSphr1sqqbπBphr2sq.
2. Let B be as above, and let moreover pV, πq be a finite-dimensional left H-module. ThenpπB b πqα : AÑ B b LpV q

is a morphism between right H-module �-algebras. Moreover, the module �-algebra structure on
BbLpV q (as at the end of Section 1.1) coincides with the one induced by this �-homomorphism
as in the first point.

Proof. The first fact can be proven as in the Hopf �-algebra case (see e.g. [9], Lemma 5.5). For the
first part of the second fact, use that pA,α,�q is a right Yetter-Drinfel’d module. For the second part,
the following identity for h P H will imply the claim:

Sphp2qr1sq b hp2qr2s b Sphp1qq b hp3q � Sphr1sqp0q b hr2sp0q b Sphr1sqp1q b hr2sp1q.
To prove this formula, apply e.g. the identities (2.1.3) and (2.1.2) from Lemma 2.1.7 of [15] to the
right hand side.
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Also the following result which will be needed at some point, although only in a very simple situation.

Proposition 1.9. Let G be a compact quantum group, B a unital C�-algebra equipped with an action
by G, and H a finite group (or even quantum group) which has a G-equivariant Galois action on B.
Then BH is G-equivariantly Morita equivalent with H 
B.

Indeed, by a well-known theorem concerning Galois extensions ([10]), we have thatH
B � EndBH pBq
by the natural homomorphism (where B is considered just as a right BH -module on the right hand
side). Clearly this identification is compatible with the �-structure and the G-action, by assumption,
leading to the stated equivariant Morita equivalence.

Restating the proposition in the form we will need it in, the above says that, under the given conditions,
p :� 1|H| °hPH λh P H 
 B will be a full projection. If moreover H is abelian, and χ a character,

then of course also pχ � 1|H| °hPH χphqλh P H 
 B is full, with ppH 
 Bqp � pχpH 
 Bqpχ � BH

equivariantly.

1.5 Quantized universal enveloping algebras

Definition 1.10. We denote by Uqpsup2qq the quantized universal enveloping �-algebra of sup2q. It
is the unital algebra generated by elements E,F,K,K�1, with commutation relations KE � q2EK,
KF � q�2FK, KK�1 � 1 � K�1K andrE,F s � K �K�1

q � q�1
.

The �-operation is determined by E� � K�1F and K� � K.

We can equip Uqpsup2qq with the unital �-homomorphism

∆ : Uqpsup2qq Ñ Uqpsup2qq d Uqpsup2qq,
uniquely determined by the fact that ∆pKq � K bK and

∆pEq � E b 1�K�1 bE,

∆pF q � F bK � 1b F.

The couple pUqpsup2qq,∆q then forms a Hopf �-algebra.
Definition 1.11. We denote by Uqp�,�q the �-algebra which, as an algebra, is generated by elements
X,Y,Z,Z�1, T with commutation relations XZ � q2ZX, Y Z � q�2ZY , Z�1Z � 1 � ZZ�1 and"

Y X � 1� q�1TZ � q�2Z2

XY � 1� q TZ � q2 Z2

The �-structure is uniquely determined by the formulas X� � Y , Z� � Z.

Note that T can be expressed in terms of X,Y and Z. Then T can be shown to be central and
self-adjoint. It is interpreted as the Casimir element of Uqp�,�q.
Remark: It is easily shown that Uqp�,�q coincides (at least after introducing a square root of K) with
the �-algebra Ŷc from [16], section 5 for c � 0 (the c can then be removed by rescaling the parameters).
It is also the same �-algebra (again after adjoining a square root of K) as the one denoted by the corre-
sponding symbol in [2] (and where the notation is explained), but we take a different presentation now.
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Proposition 1.12. The �-algebra Uqp�,�q can be made into a Galois object for pUqpsup2qq,∆q by
the coaction α, defined on the generators X,Y,Z, T by

αpZq � Z bK�1

αpXq � X b 1� Z b pq�1{2λ�1Eq,
αpY q � Y b 1� Z b pq�1{2λ�1K�1F q
αpT q � T bK � Z b pλ�2FE � q�1pK �K�1qq�X b pq1{2λ�1F q � Y b pq1{2λ�1EKq.

This fact can be shown as follows: if we forget the �-structure, then Uqp�,�q is an isomorphic copy
of Uqpsup2qq by the following identifications:

X Ø iq� 1

2λ�1E

Y Ø iq� 1

2λ�1K�1F

Z Ø iK�1

T Ø ipλ�2EF � qK�1 � q�1Kq.
The above coaction is then in fact just the comultiplication of Uqpsup2qq, which shows the Galois
map is an isomorphism. One should then check the compatibility with the �-operation separately,
but this is clear on sight. Remark that we have thus made a Wick rotation for one Borel subalgebra
(generated by E and K), but left the remaining part (generated by F ) unaltered. This will explain why
we will get unilaterally infinite-dimensional representations of our �-algebra later on. Also note that
via the above isomorphism, T is identified with an imaginary scalar multiple of the Casimir element
of Uqpsup2qq, but for the new �-structure it is self-adjoint.

Let us remark that the way in which Ŷc appears in [16] might lead one to think it could be a
Galois object. For Ŷc can be seen as the relative commutant (or centralizer) of PolpS2

qcq inside
PolpS2

qcq �Uqpsup2qq. It is easy to check that a dual coaction on a smash (or crossed) product always
restricts to the centralizer of the copy of the original algebra, so that we deduce from the above that
Ŷc will indeed by a right Uqpsup2qq-comodule �-algebra. Now the dual coaction on a smash product is
always a Galois coaction. So one might naively believe that the restriction to the centralizer will then
also be Galois, but this is not true in general. However, in the present case Ŷc splits of as a tensor
product ([4]), and by this fortuitous instance the restricted coaction does become a Galois object. To
illustrate the subtleness of this situation, we mention that the associated analytic result is not true:
the relative commutant of L 8pS2

qcq inside L 8pS2
qcq � SUqp2q does not become a Galois object (or

even a Galois action) for L pSUqp2qq (the analytic version of Uqpsup2qq). However, one can remedy
this situation in another way, and we will come back to this in future work.

As Uqp�,�q � Uqpsup2qq when the �-structure is ignored, we can deduce the following result from [8].

Proposition 1.13. The locally finite elements of Uqp�,�q w.r.t. the adjoint action form a unital�-algebra U
fin
q p�,�q, generated by X,Y and Z.

One can also easily represent Ufin
q p�,�q by generators and relations in a similar way as Uqp�,�q.

Let us present the concrete formulas for the adjoint action on Uqp�,�q by Uqpsup2qq. If b P Uqp�,�q,
then

b�K � ZbZ�1

b� pq�1{2λ�1Eq � Z�1rb,Xs
b� pq3{2λ�1F q � rb, Y sZ�1.

9



From the foregoing, we immediately see that there exists a Uqpsup2qq-equivariant �-automorphism σ

of Uqp�,�q, determined by

σ : Uqp�,�q Ñ Uqp�,�q : bÑ �b for b P tX,Z, Y, T u.
1.6 The compact quantum group SUqp2q
We will not need to know the explicit form of CpSUqp2qq or PolpSUqp2qq, and therefore simply recall
from e.g. [9], section 4.4 that there exists a non-degenerate pairing between PolpSUqp2qq and Uqpsup2qq.
One then has the following result.

Proposition 1.14. There is a one-to-one-correspondence between the following two structures:

• Left coactions of pCpSUqp2qq,∆q with a finite-dimensional space of invariant elements.

• Right module �-algebras A for Uqpsup2qq such that Afin � A. All eigenvalues for the action of K are positive. The space of a P A with a � g � εpgqa for all g P Uqpsup2qq is finite-dimensional. There exists a faithful unital �-homomorphism of A into a unital C�-algebra.
1.7 Podleś spheres

Warning: For notational reasons, we will follow a slightly different convention than the more common
one used in the Introduction: we will use the index τpxq � q�x � qx instead of cpxq � τpxq�2.

Definition 1.15. Let x P p�8,�8q, and denote τ � τpxq. The �-algebra PolpS2
qτ q is generated by

three elements Xτ , Zτ , Yτ with X�
τ � Yτ , Z

�
τ � Zτ , XτZτ � q2ZτXτ and with"

X�
τ Xτ � p1� qx�1Zτ qp1� q�x�1Zτ q

XτX
�
τ � p1� qx�1Zτ qp1� q�x�1Zτ q.

It carries (up to isomorphism) a unique right Uqpsup2qq-module �-algebra structure, induced from a
left PolpSUqp2qq-coaction, for which the span of the 1,Xτ , Zτ ,X

�
τ is a direct sum of the trivial and the

spin 1-representation of SUqp2q. The corresponding action of SUqp2q is then ergodic.

We call the symbol S2
qτ the Podleś sphere at parameter τ . When τ � 0, we call it the equatorial

Podleś sphere.

Remarks:

1. One also has the standard Podleś sphere S2
q8 � S1zSUqp2q. As it is degenerate from our point

of view, we will treat it separately later on.

2. There is an equivariant �-isomorphism στ from PolpS2
qτ q to PolpS2

q,�τ q sending bτ to �b�τ for
b P tX,Z, Y, T u. Hence up to isomorphism, PolpS2

q,τ q only depends on |τ |, and we can parametrize

Podleś spheres by c � 1
τ2
. The latter is the convention we used in the Introduction. For

the purposes of the article, it will be more convenient not to identify the two Podleś spheres
immediately. For example, on the equatorial Podleś sphere we get in particular an involutive
equivariant automorphism σ0, which plays an important rôle in the theory.

The following was proven in [2], but can be immediately verified. We will denote by PolextpS2
qτ q the�-algebra which is obtained by adjoining to PolpS2

qτ q an inverse of Z (which clearly does not introduce
additional relations).
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Proposition 1.16. There is a Uqpsup2qq-equivariant unital �-homomorphism

πτ : Uqp�,�q Ñ Pol extpS2
qτ q,

induced by sending a generator b P tX,Z, Y u to the corresponding element bτ . The kernel of this

homomorphism is generated by the element T�τ . Under this morphism, Ufin
q p�,�q is sent to PolpS2

qτ q.
Remarks:

• We note that also the standard Podleś sphere can be obtained in a similar manner, using instead
the �-algebra Uqp0,�q from [2].

• From the observations in Section 1.5, it follows that the action of Uqpsup2qq on the (localized)
Podleś sphere is inner. This was also observed in [16].

• The isomorphisms στ mentioned before the proposition are then easily seen to be induced from
the automorphism σ at the end of Section 1.5.

The following result gives a classification of all irreducible �-representations of PolpS2
qτ q (see [14]).

Proposition 1.17. Any irreducible �-representation of PolpS2
qτpxqq on a Hilbert space is either

• faithful, in which case it is isomorphic to one of the following two �-representations π� on l2pNq:"
Zτpxq Ñ Zτpxq,� : ek Ñ �q2k	x�1ek,

Xτpxq Ñ Xτpxq,� : ek Ñ �p1� q2kq1{2p1� q2k	2xq1{2ek�1.

• one-dimensional, by sending Zτ to zero and Xτ to a complex number of modulus 1.

Note that the above also classifies all irreducible representations of Ufin
q p�,�q, which were computed

in [16]. It is obvious what is meant then by the �-representation
πτ,� : Ufin

q p�,�q Ñ Bpl2pNqq.
The equality

πτ,� � π�τ,� � σ
is easily observed. If we consider the pre-Hilbert space V � CrNs with its natural orthonormal ba-
sis ek, we can represent PolextpS2

qτ q (and Uqp�,�q) as a �-algebra of adjointable endomorphisms of
V (i.e. banded operators) by the same formulas as the one in the foregoing proposition. To avoid
overloading the notation, we will make no distinction between an element in π�pPolpS2

qτ qq seen as an
operator on l2pNq or its restriction to V (this will not lead us astray).

Let us complete our notational conventions with the following.

Notation 1.18. For b P tX,Y,Zu, we will identify bτ with the operator

bτ :� bτ,� ` bτ,� P LpV ` V q,
and then write bτ for the operator

bτ :� b�τ,� ` bτ,� P LpV ` V q.
We write

Pol�pS2
qτ q,Pol�pS2

qτ q,PolpS2
qτ q,PolapS2

qτ q
for the images of Ufin

q p�,�q under the respective representations, which we label by the same conven-
tion.
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2 Equivariant Morita equivalence for the Podleś spheres

In this section, we will prove Theorem 0.1.

We will fix x P p�8,�8q, and write τ :� τpxq.
Notation 2.1. For w P t�,�, , au, we consider Polextw pS2

qτ qdM2pCq with the right Uqpsup2qq-module�-algebra structure as at the end of Section 1.1, using on C
2 the spin 1{2-representation π1{2. We

then denote by π
p2q
τ,w the morphism from Uqp�,�q to Polextw pS2

qτ q dM2pCq as in Lemma 1.8.2.

We will further denote by te�, e�u the canonical basis of C2, so that Uqpsup2qq acts by$&% Ke� � q	1e�
Ee� � q1{2δ�,�e�
Fe� � q�1{2δ�,�e�

We further denote the product basis elements ek b e� of l2pNq b C
2 as ek,�.

Proposition 2.2. The self-adjoint operator T
p2q
τ,� :� π

p2q
τ,�pT q is bounded, its spectrum consisting of

two eigenvalues. Moreover, it is an invariant element in Pol�pS2
qτ q dM2pCq.

Proof. First of all, it is clear that T
p2q
τ,� will be invariant, as T is invariant for the adjoint action � (it

is a central element of Uqp�,�q), and π
p2q
τ,� is equivariant. Then T

p2q
τ,� P Pol�pS2

qτ qdM2pCq by Lemma
1.1 and the remark after it.

Next, a straightforward computation shows that T
p2q
τ,� preserves spantek,�, ek�1,�u for k ¥ 0, with the

resulting 2-by-2-matrix being given by� ppq�x � qxqq�1 � pq�1 � qqq2k�x�2q λ�1p1� q2k�2q1{2p1� q2k�2x�2q1{2
λ�1p1� q2k�2q1{2p1� q2k�2x�2q1{2 ppq�x � qxqq � pq�1 � qqq2k�x�2q 
 .

(The remaining vector e0,� is an eigenvector, with eigenvalue the right lower corner of the above
matrix with k � �1).
We find that the eigenvalues of these matrices are q�px�1q�qx�1 and q�px�1q�qx�1, and in particular

are independent of k. This proves that T
p2q
τ,� has precisely two eigenvalues.

Remark: Note that the eigenvalues of T
p2q
τ,� naturally appear as differences of q-powers, in contrast

with the classical Casimir element of Uqpsup2qq whose eigenvalues are sums of q-powers.

For further reference, we write down a basis of orthogonal eigenvectors for T
p2q
τ,�.

Lemma 2.3. An orthonormal set of eigenvectors for T
p2q
τ,� at eigenvalues τpx � 1q is given by the

ξ
τpx�1q
k,� respectively, where k P N anda

1� q2x � ξτpx�1q
k,� � pek�1,� ek,�q �� �p1� q2kq1{2

qxp1� q2k�2xq1{2 
 ,a
1� q2x � ξτpx�1q

k,� � pek,� ek�1,�q �� qxp1� q2k�2x�2q1{2p1� q2k�2q1{2 

.
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We can also introduce an operator T
p2q
τ,� w.r.t. πτ,� in a similar way, and the relation πτ,� � π�τ,� � σ

then immediately gives that T
p2q
τ,� � �T p2q�τ,�. We denote the respective eigenvectors for the eigenvalues

τpx� 1q of T p2q
τ,� asa

1� q2x � ξτpx�1q
k,� � pek,� ek�1,�q � � p1� q2k�2x�2q1{2

qxp1� q2k�2q1{2 

,a

1� q2x � ξτpx�1q
k,� � pek�1,� ek,�q � � �qxp1� q2kq1{2p1� q2k�2xq1{2 


.

We will also need to know the invariant functional on PolpS2
qτ q. The following result was proven in

[12] (see also [16]).

Proposition 2.4. Let ϕτ be the faithful normal positive functional on Bpl2pNq` l2pNqq which has Zτ

as its associated trace class operator. Then the restriction of ϕτ to PolpS2
qτ q is Uqpsup2qq-invariant.

One way to prove this is as follows: we want to show ϕτ px � bq � ϕτ pxqεpbq for x P PolpS2
qτ q and

b P tX,Z, Y u. First show invariance for elements in PolpS2
qτ q �Z, which are trace class operators. One

can use here the formulas in terms of the inner action without worrying about the unboundedness (of
Z�1 and the trace Tr). One is left with showing invariance for elements of the form Xn or pX�qn
with n P N. But the only non-trivial case to consider is n � 1, for which we can simply compute the
values.

We now give a proof of Theorem 0.1.

Proof (of Theorem 0.1). Let us first note that we can apply Proposition 1.14 to PolpS2
qτ q dM2pCq,

so that we can work on the level of Uqpsup2qq.
We use the notation of Proposition 2.2. Write

p P Pol�pS2
qτ q dM2pCq

for the eigenprojection of T
p2q
τ,� corresponding to the eigenvalue τpx�1q. Then by Proposition 1.16, the

restriction of π
p2q
τ,� to ppV dC

2q factors through PolextpS2
qτpx�1qq. As the image of Zτpx�1q is easily seen

to have distinct non-zero positive eigenvalues, it follows from the classification of �-representations of
the PolpS2

qτ q that this representation of PolpS2
qτpx�1qq on ppl2pNqbC

2q is a copy of πτpx�1q,�. (In fact,

one may check directly that the isomorphism is simply given by sending ξ
τpx�1q
k,� to ek.) The similar

statements hold for the eigenspace of τpx� 1q, as well as for the π�-representations.
Let us denote B � ppPolpS2

qτ q dM2pCqqp. To see that

B � PolpS2
qτpx�1qq, (*)

let us first remark that, by the preceding paragraph, the restriction of π
p2q
τpxq to pppV ` V q b C

2q is
precisely πτpx�1q. Hence PolpS2

qτpx�1qq � B equivariantly. Further, if ϕ1{2 is the invariant state on

M2pCq for the adjoint spin 1/2-action of SUqp2q, and ϕτ the invariant functional of the previous
proposition, then ϕτ b ϕ1{2 is invariant on PolpS2

qτ q dM2pCq. It follows that there exists a faithful
normal functional on Bpl2pNq ` l2pNqq which restricts to an invariant functional on B. Now we re-
mark that B � Bpl2pNqq ` Bpl2pNqq � BpHτpx�1qq. As Bpl2pNqq ` Bpl2pNqq is easily seen to equal
PolpS2

qτpx�1qq2, we can conclude (*) by Lemma 1.3.
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Hence S2
qτpxq and S2

qτpx�1q are SUqp2q-Morita equivalent by Proposition 1.4. This proves that all Pod-

leś spheres S2
qτpxq and Sqτpyq with x, y P R and x� y P Z are SUqp2q-Morita equivalent.

As the spin 1/2 representation is generating, it follows from Lemma 1.5 that Sqτpxq is equivariantly
Morita equivalent with some X iff X � Sqτpyq for some y with x� y P Z. The statement of Theorem
0.1 now follows for x � 8 by observing that PolpSqτpxqq � PolpSqτp�xqq.
Finally, the standard Podleś sphere S2

q0 is only equivariantly Morita equivalent with itself by the

remark after Proposition 1.4. Indeed, it is the quotient space of SUqp2q by S1, but the latter only
has one-dimensional irreducible representations, so any induced coaction is isomorphic to the original
one.

We end this section with the following observation.

Corollary 2.5 (of the proof of Theorem 0.1). With G � SUqp2q, the equivariant Picard group
PicGpS2

qτ q of the Podleś spheres is determined as follows.

• PicGpS2
q8q � Z,

• PicGpS2
qτpxqq � Z2 for x P Z,

• PicGpS2
qτpxqq is the trivial group in the remaining cases.

By the equivariant Picard group for a G-homogeneous space X, we mean the equivalence classes
of equivariant equivalence CpXq-Hilbert bimodules, with composition given by the balanced CpXq-
product.

Proof. For S2
q8 the result follows as the equivalence classes of irreducible imprimitivity Hilbert mod-

ules are labeled by Z � IrreppS1q, and PolpS2
q8q has no outer automorphisms. It is easily verified that

the resulting group structure is also Z.

For S2
qτpxq with x R Z, we have computed that any irreducible imprimitivity Hilbert module has some

PolpS2
qτpyqq as its endomorphism algebra, where y P x�Z. As Sqτpxq � Sqτpyq equivariantly iff x � �y,

and as S2
qτpxq has no outer automorphisms, the result for this case also follows.

Finally, for S2
q0, the first part of the previous argument still applies, but now OutGpPolpS2

q0qq � Z2.

Hence PicGpS2
q0q � Z2. As the Sqτpxq with x P Z are G-Morita equivalent with S2

q0, the result follows

also for these cases. (In fact, observe that the PolpS2
qτp2lqq-linear span of the As inside the

�-algebra Bl

of Theorem 0.2 give a concrete equivariant equivalence (pre-)Hilbert C�-bimodule between PolpSqτp2lqq
and PolpSqτp�2lqq � PolpSqτp2lqq.)
Remark: A similar distinction between the equilateral Podleś spheres (i.e. τ � 0 or 8), and the only
further one that we are aware of, appears in Proposition 9 of [7], where the spectral decomposition of
a certain subspace of the restricted duals of the Podleś spheres is computed. However, now the set of
exceptional cases is slightly larger, as the are given by the τpxq with x P 1

2
N. We have not examined

in detail whether there is any direct connection with the above result.

3 Equivariant Morita equivalence for the quantum pro-

jective plane

We will first show that the module �-algebra Bl of Theorem 0.2 is well-defined.

14



We will index the elements b P tX,Y,Zu � Bl with 2l (dropping the τ -symbol w.r.t. previous nota-

tion), and denote the As as A
psq
2l . However, when the indices are not crucial in a computation, we will

drop them.

We will also use the following orthogonal basis for the pre-Hilbert space V ` V , where V � CrNs: for
k P N � 2l � t�2l,�2l � 1, . . .u, we denote by e

plq
k,� the vector 0` ek�2l, and for k P N, we denote by

e
plq
k,� the vector ek ` 0.

We want to build now on V ` V a bounded �-representation of Bl. Namely, we let the generators of
Bl correspond to the following banded operators:

X2le
plq
k,� � �p1� q2kq1{2p1	 q2k�4lq1{2eplqk�1,�,

Z2le
plq
k,� � �q2k�2l�1e

plq
k,�

X�
2le

plq
k,� � �p1� q2k�2q1{2p1	 q2k�4l�2q1{2eplqk�1,�

A
psq
2l e

plq
k,� � p�1qsp�q2k�2s�2; q2q1{22l�sp	q2k�2; q2q1{22l�se

plq
k�s,	

It is an easy task to check that the commutation relations in Theorem 0.2 are satisfied for these
operators. If we restrict to PolpS2

qτp2lqq � Bl, we see that we get the natural representation πτp2lq.
Lemma 3.1. The above representation is faithful.

Proof. Let us formally write X�1 for X�. Then the commutation relations, together with their
adjoints, clearly allow to write any element of Bl as a linear combination of elements of the form

• XmZn with m P Z, n P N,

• AsZ
n with s P t�2l � 1,�2l � 1, . . . , 2l � 1u and n P N,

• A�2lX
mZn with m,n P N, and

• A2lpX�qmZn with m,n P N.

We will now show that the representations of these monomials are linearly independent. We will in
the following already use the same notation for these operator algebraic implementations. Note that
in any case none of the above monomials are zero operators.

From looking at the natural Z � Z2-gradation on Bl by the adjoint action of Z, we see immediately
that the above families are linearly independent amongst each other, and that inside each family we
can only have linear dependencies of the form AsX

mP pZq � 0 for some non-zero (Laurent) polynomial
P in Z. But it is clear that these do not occur.

Using the notation from Notation 1.18, consider Polexta pS2
qτp2lqq � LpV ` V q, which induces a module�-algebra structure on the �-algebra of banded operators on V ` V by Lemma 1.8.1.

Proposition 3.2. The above module �-algebra structure restricts to Bl, and coincides with the one
described in Theorem 0.2.

Proof. It is clear that the above module �-algebra structure restricts to PolpS2
qτp2lqq � Bl, and co-

incides with the usual one. We are therefore left to show that it behaves in the right way on the
operators As.
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Let us write e for the sign operator

e : V ` V Ñ V ` V : e
plq
k,� Ñ �eplqk,�,

so that b2l � eb2l for b P tX,Z, Y u. Denote θ
psq
2l � λsAs where

λs � q
1

2
sps�1q pq4l�2s�2; q2q1{2s�2lpq2; q2q1{2s�2l

.

We then have

θ
psq
2l �K � Zθ

psq
2l Z

�1� eZθ
psq
2l Z

�1e� �q2seθpsq2l e� q2sθ
psq
2l .

This small computation already makes it clear why we can not use the naive map of Uqp�,�q into
PolpS2

qτp2lqq to define the module �-algebra structure.

Similarly, we compute

θ
p�2lq
2l � pq�1{2λ�1Eq � Z�1erθp�2lq

2l , eXs� Z�1epθp�2lq
2l Xe� eXθ

p�2lq
2l q� �Z�1pθp�2lq

2l X �Xθ
p�2lq
2l q� �Z�1pθp�2lq

2l X � θ
p�2lq
2l Xq� 0,

showing that θ
p�2lq
2l is a highest weight vector for the spin 2l-representation.

For s ¡ �2l, we have

Xθ
psq
2l � � λs

λs�1

p1� q2l�1Zqθps�1q
2l ,

and, by taking the adjoint of the commutation relations for the X�, we also have

θ
psq
2l X � λs

λs�1

p1� q�2s�2l�1Zqθps�1q
2l .

So then we find

θ
psq
2l � pq�1{2λ�1Eq � λs

λs�1

pq�2s�2l�1 � q2l�1qθps�1q
2l .

Simplifying, this becomes

θ
psq
2l � E � q�s�2l� 1

2λp1� q4l�2sq1{2p1� q4l�2s�2q1{2θps�1q
2l .

Carrying out a similar calculation for F , or using the compatibility between the module structure and
the �-operation, we also find

θ
psq
2l � F � qs�2l� 1

2λp1� q4l�2s�2q1{2p1� q4l�2sq1{2θps�1q
2l

for s   2l, and θ
p2lq
2l � F � 0. In all, we find that the action of Uqpsup2qq on the elements θ

psq
2l indeed

gives a (right) presentation of the spin 2l-representation.
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We now show that the action on Bl is ergodic.

Lemma 3.3. The module �-algebra Bl has only the scalar multiples of the unit as its invariant
elements.

Proof. Using the arguments concerning the basis constructed in Lemma 3.1, we see that an invariant
element b can be written as b1 � b2 with b1 P PolpS2

qτp2lqq and b2 a linear combination of elements

of the form A0Z
n with n P N. As the natural grading on Bl is Uqpsup2qq-compatible, both b1 and

b2 have to be invariant. But the action on a Podleś sphere is ergodic, so b1 reduces to a scalar. On
the other hand, set b2 � A0P pZq with P pZq a polynomial in Z. Then the invariance of b2 under the
adjoint action of E leads to the following functional equation for P :p1� q�2l�1ZqP p�q�2Zq � p1� q2l�1ZqP pZq.
It is clear that the only solution is P � 0.

We can thus apply Proposition 1.14 to find that Bl has a well-defined action by SUqp2q. This finishes
the existence part of the SUqp2q-action proposed in Theorem 0.2.

It is also easy to provide the invariant functional on Bl.

Proposition 3.4. Let ϕl be the normal positive functional on Bpl2pNq ` l2pNqq which has Z as its
associated trace class operator. Then ϕl is Uqpsup2qq-invariant on Bl.

Proof. Let p� be the projections onto the summands of l2pNq ` l2pNq. We find that the conditional
expectation

E : Bpl2pNq ` l2pNqq Ñ Bpl2pNqq `Bpl2pNqq : xÑ p�xp� � p�xp�
restricts to an equivariant conditional expectation Bl Ñ PolpS2

qτp2lqq. Since ϕl � ϕτp2lq � E, the
proposition follows from Proposition 2.4.

We can now prove Theorem 0.2.

Proof (of Theorem 0.2). We first remark that the definition of Bl also makes sense when l � 0. In
fact, it is easily seen that B0 is just a copy of PolpS2

q,0q � Z2 where Z2 acts by the automorphism σ0
(see the remark after Definition 1.15). All results of this section then hold for B0, except that B0 is
not ergodic: the proof of 3.3 in fact shows that the space of invariants is linearly spanned by 1 and A0.
Now the ‘antipodal reflection map’ σ0 on PolpS2

q0q gives a Galois action by Z2 (cf. [5], Proposition
2.10). Hence, by the discussion after Proposition 1.9, B0 is SUqp2q-equivariantly Morita equivalent
with PolpRP 2

q q, which is by definition the fixed point algebra under σ0. If we denote p� � 1
2
p1�A0q,

then p�B0p� � PolpRP 2
q q equivariantly.

Now for l P 1
2
N, let us write V2l,� for the space V � CrNs considered with the π�-action by PolpS2

qτp2lqq,
and V2l � V2l,�` V2l,�. Consider Bl dM2pCq, represented on V2l dC

2. Let us write the eigenvectors
ξ from Lemma 2.3 and the remark under it as follows:

e
pl� 1

2
q

k,� � ξ
τp2l�1q
k�2l�1,�, k P N� p2l � 1q,

e
pl� 1

2
q

k,� � ξ
τp2l�1q
k,� , k P N.

We may identify the span of the e
pl� 1

2
q

k,ν over all k with V2l�1,ν , where ν P t�,�u. Then we can write

V2ldC
2 as V2l�1` V2l�1, with corresponding projection maps p2l�1. From the results of the previous

section, it follows that

p2l�1pPolpS2
qτp2lqq bM2pCqqp2l�1 � PolpS2

qτp2l�1qq,
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in its natural presentation w.r.t. the basis epl� 1

2
q. Now as π�τ,� � πτ,� � σ, we have that in the new

basis also
π
p2q
τp2lq,a � πτp2l�1q,a ` πτp2l�1q,a,

where we recall the notations Notation 1.18 and Notation 2.1. By Lemma 1.8.2, the action of Uqpsup2qq
on Bl dM2pCq will be implemented by this representation.

We want to show now that
p2l�1pBl bM2pCqqp2l�1 � Bl� 1

2

,

where for the moment we assume l ¡ 0 in the �-case. As the σ-weak closure of Bl is clearly the
whole of Bpl2pNq ` l2pNqq, and as the latter has a normal positive functional which restricts to an
invariant functional on Bl, by the previous proposition, a similar argument as in the proof of Theorem
0.1 shows that it is sufficient to prove that the right hand side is contained in the left hand side.

We have already remarked above that the copy of the Podleś sphere inside Bl� 1

2

will belong to the

left hand side. It remains to prove this also for the generators A
psq
2l�1.

Let us denote ek,µ,ν for the vector e
plq
k,µ b eν in V2l b C

2. Then we may writea
1� q4l � epl� 1

2
q

k,� � pek,�,� ek�1,�,�q �� 	p1	 q2k�4l�2q1{2
q2lp1� q2k�2q1{2 


,a
1� q4l � epl� 1

2
q

k,� � pek�1,�,� ek,�,�q �� �q2lp1� q2kq1{2p1	 q2k�4lq1{2 

.

Inversely we have

1a
1� q4l

� ek,�,� � pepl� 1

2
q

k,� e
pl� 1

2
q

k�1,�q � � 	p1	 q2k�4l�2q1{2�q2lp1� q2k�2q1{2 
 ,

1a
1� q4l

� ek,�,� � pepl� 1

2
q

k�1,� e
pl� 1

2
q

k,� q � � q2lp1� q2kq1{2p1	 q2k�4lq1{2 
 .

One computes then that w.r.t. the original basis of V2l b C
2 � � V2l b e�

V2l b e� 
, one has

A
p0q
2l�1 � � �Ap0q

2l p1� q4l�2Z2q q2lA
p�1q
2l p1� q�2l�1Zqp1� q2l�1Zq�q2lAp1q

2l p1� q�2l�1Zqp1� q2l�1Zq q4lA
p0q
2l p1� q�4l�2Z2q �

.

A similar computation shows that, for l ¡ 0, we can write

A
p0q
2l�1

� � �q4lAp0q
2l �q2lAp�1q

2l

q2lA
p1q
2l A

p0q
2l

�
. (*)

We have thus shown that
A
p0q
2l�1

P p2l�1pBl bM2pCqqp2l�1.

As all other A
psq
2l�1 lie in A

p0q
2l�1 � Uqpsup2qq, it follows that

A
psq
2l�1

P p2l�1pBl bM2pCqqp2l�1

for all s, and so p2l�1pBl bM2pCqqp2l�1 � Bl� 1

2

.
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Now Theorem 2 will follow from Lemma 1.5 and the above discussion, if we can also show that
PolpRP 2

q q bM2pCq � B 1

2

. From the remarks in the first paragraph of this proof, it is sufficient to

show that pp� b 1qpB0 bM2pCqqpp� b 1q � B 1

2

.

Now an easy computation shows that pA0 b 1qp1pA0 b 1q � p�1. As we already know that

p1pB0 bM2pCqqp1 � B 1

2

,

on which the SUqp2q-action is ergodic, we must have that p1 and p�1 are minimal projections in the
fixed point algebra of B0 bM2pCq. As also pA0 b 1q lies in the latter, it follows that the fixed point
algebra is in fact M2pCq. Hencepp� b 1qpB0 bM2pCqqpp� b 1q � p1pB0 bM2pCqqp1 � B 1

2

,

and we are done.

Acknowledgements: I would like to thank U. Krähmer for pointing me towards the references [7] and
[16].
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