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Abstract

Let SUq(2) and Ẽq(2) be Woronowicz’s q-deformations of respectively the compact Lie group SU(2)
and the non-trivial double cover of the Lie group E(2) of Euclidian transformations of the plane. We
prove that, in some sense, their duals are ‘Morita equivalent locally compact quantum groups’. In
more concrete terms, we prove that the von Neumann algebraic quantum groups L∞(SUq(2)) and

L∞(Ẽq(2)) are unitary cocycle deformations of each other.
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Introduction

This is part of a series of papers devoted to an intriguing correspondence between the quantizations
of SU(2), Ẽ(2) and S̃U(1, 1), where the latter denotes the normalizer of SU(1, 1) inside SL(2,C). In
a sense, their duals form a trinity of ‘Morita equivalent locally compact quantum groups’. There then
exists a ‘linking quantum groupoid’ combining these three quantum groups into one global structure,
and it is important to understand for example the (co)representation theory of this object.

In this paper, we will treat the ‘groupoid von Neumann algebra of the linking quantum groupoid
between the dual of SUq(2) and the dual of Ẽq(2)’. We also treat part of its associated infinitesimal
description. One will see that it bears some similarities to the ‘contraction procedure’ which has been
studied on the algebraic level in a series of papers by Celeghini and collaborators (see e.g. [6], [7]), and
in a C∗-algebraic framework by Woronowicz in [48]. But our philosophy is different: while those au-
thors consider the passage between the two quantum groups as a kind of limit procedure, we construct
a concrete object linking them. In a sense, we construct a bridge to cross the water, while in the other
approach, one searches a place where the river is shallow enough to cross. In any case, we will try to
comment at the appropriate places when there is a concrete resemblance between our theory and the
contraction procedure. We also remark that a close connection between SUq(2), Ẽq(2) and SUq(1, 1)
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is known in relation to the q-analogue of the Askey-Wilson function transform scheme ([27], section 7).

The main tool in this paper is the theory of projective representations for locally compact quantum
groups, developed in the final part of [8] (and based on observations by A. Wassermann in [43]).
Indeed, using this theory, we showed in [10] (chapter 10) that whenever a compact quantum group
has an infinite-dimensional irreducible projective representation, it allows for an ‘exotic deformation’
into a non-compact locally compact quantum group. It turns out that there are (at least) two distinct
such irreducible representations for SUq(2), which even have a quantum geometrical description: the
first is associated to the homogeneous action of SUq(2) on the standard Podleś sphere, the other
with its homogeneous action on the quantum projective plane ([20]). These will be related to the

deformations of SUq(2) into respectively Ẽq(2) and S̃U q(1, 1).

The contents of this paper are as follows.

In the first section we recall the analytic notions of von Neumann algebraic quantum groups (see
[29],[30],[42]), von Neumann algebraic linking quantum groupoids ([10]) and unitary projective rep-
resentations for (locally) compact quantum groups ([8],[10]), and the algebraic notions of bi-Galois
objects ([37]) and co-linking weak Hopf algebras ([4], [10]). We also recall the definitions of SUq(2) and

Ẽq(2) on the Hopf ∗-algebra level, and of the dual quantized universal enveloping algebras Uq(su(2))
and Uq(e(2)).

In the second section, we begin by observing that the von Neumann algebraic completion of the action
of SUq(2) on the standard Podleś sphere provides a projective unitary representation of SUq(2). We
state the fact, proven in [11], that the standard Podleś sphere can also be seen as a subquotient
∗-algebra of a ∗-Galois object for Uq(su(2)), with the associated infinitesimal action coming from the
Miyashita-Ulbrich action on the Galois object.

In the third section we combine the above two viewpoints with the general theory from [8] to construct
a concrete implementation of the group von Neumann algebra of a linking quantum groupoid between

ŜUq(2) and some locally compact quantum group H.

In the fourth section, we show that H is isomorphic to the dual of Woronowicz’s Ẽq(2) quantum group.
We end by showing that the linking quantum groupoid is in fact cleft, i.e. that it can be implemented
by a unitary 2-cocycle for L∞(SUq(2)).

Conventions and remarks on notation

For the rest of the paper, we fix a real number 0 < q < 1. We then denote

λ = (q − q−1)−1 < 0.

By ι we always mean the identity map.

The dual of a vector space V will be denoted as V ◦, since we preserve the symbol ∗ for anti-linear
involutions.

When talking about Hopf algebras, we always assume that the base field is C and that the antipode is
bijective. We will use the Sweedler notation for comultiplications and comodule structures (see [39]).
We use [25] as our main reference to quantum groups.
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We will denote quantum groups (and more general structures) by the symbols G,H, . . ., and their
duals by the symbols G,H, . . . (we give some more information concerning this notation in the first
section). From the second section on, G will always denote the compact quantum group SUq(2).

The following tensor product notations will be used. For algebraic tensor products between vector
spaces, we use �. For minimal tensor products between C∗-algebras, or for tensor products between
Hilbert spaces, we use ⊗. For spatial tensor products between von Neumann algebras, we use ⊗̄.
For tensor products between elements of any these structures, we always use ⊗. We will also use
the leg numbering notation as is customary in quantum group theory, but provide them with extra
square brackets so as not to conflict with ordinary index notations (so if x ∈ B(H ⊗2), we denote
x[23] = 1⊗ x ∈ B(H ⊗3) etc.).

When H is a Hilbert space, we write B0(H ) for the space of compact operators. When ξ, η ∈ H ,
we write ωξ,η ∈ B(H )∗ for the normal functional

ωξ,η(x) = 〈xξ, η〉,

the scalar product being anti-linear in the second variable. Matrix units in B(l2(N)) are denoted as eij .

We will use the following notations from q-analysis. For n ∈ N ∪ {∞} and a ∈ C, we denote

(a; q)n =

n−1∏
k=0

(1− qka),

which determines analytic functions in the variable a with no zeroes in the open unit disc. We write
Eq(z) for the formal power series

Eq(z) =
∑
k∈N

q
1
2
k(k−1)

(q; q)k
zk.

Then for any a ∈ C, we have that Eq(a) will be a convergent sum, with

Eq(a) = (−a; q)∞.

We write [
n
m

]
q

=
(q; q)n

(q; q)n−m(q; q)m

for m ≤ n natural numbers.

We will need to use structures which are defined very similarly to each other. Then the names for
the structures are often indexed, and when multiple structures are used together, we will index the
objects associated to these structures with the corresponding index. However, when the structures
appear isolated, we will refrain from indexing any of its associated structure. Also, when we index
something with two indices which are the same, we will sometimes take the liberty of indexing with
just one times this index symbol.
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1 Linking quantum groupoids and Morita equivalence

of quantum groups

1.1 von Neumann algebraic quantum groups and linking quantum
groupoids

Definition 1.1. ([30]) A von Neumann algebraic quantum group (M,∆) consists of a von Neumann
algebra M and a normal unital ∗-homomorphism ∆ : M → M⊗̄M satisfying the coassociativity
condition

(∆⊗ ι)∆ = (ι⊗∆)∆,

and for which there exist nsf (normal semi-finite faithful) weights ϕ and ψ on M such that for all
normal states ω on M and all x ∈M+ we have

ϕ((ω ⊗ ι)∆(x)) = ϕ(x) (left invariance),

ψ((ι⊗ ω)∆(x)) = ψ(x) (right invariance).

We will follow the useful practice of writing a couple (M,∆) as L∞(G), i.e. as if it concerns the space
of bounded measurable functions on some ‘locally compact quantum group’ G. We then also freely
use the notations Cr0(G) for the associated reduced C∗-algebraic quantum group ([29]), L (G) for the

dual von Neumann algebraic quantum group (M̂, ∆̂), . . . In particular, we may write L∞(G) = L (Ĝ)
by the Pontryagin duality for locally compact quantum groups ([30]). For convenience of notation,
we will denote the Pontryagin dual of G as G in stead of Ĝ, as to treat two quantum groups in duality
on a more equal level qua notation. We will then further also talk about ‘a left corepresentation of
L∞(G)’ as being ‘a left representation of G’, but will for example call ‘a left coaction of L∞(G) on
a von Neumann algebra N ’ a ‘right action of G on N ’. However, when also the algebra acted upon
is interpreted as the space of functions on some ‘quantum space X’, we also call this ‘a left action
of G on X’. (We admit that this left-right terminology is a bit tedious, and we refrain from further
comments on it in the future (concerning the terminology introduced in Theorem 1.5 for example).)

Definition 1.2. ([36]) Let P and M be two von Neumann algebras. A linking von Neumann algebra
between P and M consists of a von Neumann algebra Q together with a self-adjoint projection e ∈ Q
and ∗-isomorphisms P → eQe and M → (1− e)Q(1− e), such that both e and (1− e) are full projec-
tions (i.e. have central support equal to 1).

Two von Neumann algebras P and M are called W∗-Morita equivalent if there exists a linking von
Neumann algebra between them.

We will mostly just identify P and M with their parts inside a linking von Neumann algebra, thus
neglecting the identifying maps. We will also write Qij = eiiQejj with e11 = e and e22 = 1− e, and

Q =

(
Q11 Q12

Q21 Q22

)
,

in well-established and easily interpreted matrix notation. We will also talk simply of ‘a linking von
Neumann algebra’ (without specifying what the corners are) or of ‘a linking von Neumann algebra for
the von Neumann algebra M ’ (without specifying the von Neumann algebra in the upper left corner).
In fact, this terminology dictates the strongness of the isomorphism one is interested in (keeping none,
one or both of the diagonals pointwise fixed).
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Definition 1.3. ([10]) Let (P,∆P ) and (M,∆M ) be von Neumann algebraic quantum groups. A von
Neumann algebraic linking quantum groupoid between (P,∆P ) and (M,∆M ) consists of a linking
von Neumann algebra (Q, e) between P and M , together with a (non-unital) coassociative normal
∗-homomorphism ∆Q : Q→ Q⊗̄Q satisfying

∆Q(e) = e⊗ e, ∆Q(1− e) = (1− e)⊗ (1− e)

and
(Q11, (∆Q)|Q11

) ∼= (P,∆P ),

(Q22, (∆Q)|Q22
) ∼= (M,∆M )

by the isomorphisms appearing in the definition of a linking von Neumann algebra.

We will then denote by ∆ij : Qij → Qij⊗̄Qij the restriction of ∆Q to Qij . (One may view Qij⊗̄Qij
as (eii ⊗ eii)(Q⊗̄Q)(ejj ⊗ ejj), this tensor product then being as well-behaved as the usual spatial
tensor product between von Neumann algebras.) We also follow the same conventions as for linking
von Neumann algebras, and will talk about ‘a von Neumann algebraic linking quantum groupoid’ or
‘a von Neumann algebraic linking quantum groupoid for (M,∆)’.

It seems apt to interpret such a von Neumann algebraic linking quantum groupoid as the group von
Neumann algebra of some ‘locally compact quantum groupoid L’ with two objects (see [4] for this
interpretation in an algebraic (and dual) setting). We therefore also write von Neumann algebraic
linking quantum groupoids in the form

Q = L (L) =

(
L (H) L (X)

L (X) L (G)

)
,

where for example L (X) should be seen as a weakly closed linear span of a space of arrows X from G
to H. The fact that L is a ‘linking groupoid’ then says in a way that ‘any arrow (=element) in G can
be written as the composition of an arrow in X and an arrow in X’, and similarly for H. Of course,
for ordinary groups G and H this would be too strong a condition to be really interesting (since G
and H would then automatically be isomorphic). It therefore seems better to interpret this situation
classically in the more general settings of groupoids G and H, where the above condition precisely
captures the notion of a ‘linking groupoid’ and the associated ‘Morita equivalence’ between groupoids.
This is our motivation to call two locally compact quantum groups G and H Morita equivalent when
there exists a von Neumann algebraic linking quantum groupoid L (L) between L (G) and L (H).
We then call L the associated locally compact (l.c.) linking quantum groupoid. We could then also
call the object X a locally compact quantum (bi-)torsor, the usage of the predicate ‘locally compact’
seems justified by the results in [10] which show that one also has associated C∗-algebraic descriptions
(just as for the von Neumann algebraic quantum groups themselves).

There is however one important remark that we must make: two ordinary groups can be Morita
equivalent as quantum groups, and yet not be Morita equivalent (i.e. isomorphic) as groups. The
reason is that they could be linked by a quantum torsor X which is not classical, i.e. for which ∆L (X)

is not cocommutative. This is a concrete version of the fact that a monoidal (∗-)equivalence between
the (∗-)representation categories of two (say finite) groups need not preserve the natural symmetry
on the representation category (see e.g. [15] and [21]).

We should also note that the above ‘von Neumann algebraic linking quantum groupoids’ can be fitted
into the framework of measured quantum groupoids ([32],[13]), and could in fact be seen as the most
easy kind of example of this structure, apart from the locally compact quantum groups themselves.
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We will in the following always use the above notation for linking quantum groupoids and its con-
stituents. When changing the notation for L by using a different font or by adding an index, we make
the same notational change for the constituents.

The following notion was introduced in [8].

Definition 1.4. Let G be a locally compact quantum group. A (unitary) projective right representa-
tion of G on a Hilbert space H is a right action

α : B(H )→ L∞(G)⊗̄B(H )

of G on B(H ).

This definition is motivated by the fact that if G is a locally compact group and H a separable
Hilbert space, there is a one-to-one correspondence between (anti-)homomorphisms G→ Aut(B(H ))
and (anti-)homomorphisms G → U(H )/S1, the group of unitaries divided out by the circle group
(imposing the appropriate continuity conditions).

The following theorem is one of the main results of [8] (Theorem 6.2, which uses a slightly different
terminology), and its proof is quite involved. (An independent and easier proof, disregarding the
weight structures, can be found in [12], Proposition 3.6 (see also Proposition 3.7 of that paper).)

Theorem 1.5. Let G be a locally compact quantum group and α a projective right representation of
G on a Hilbert space H . Then there exists a l.c. linking quantum groupoid L for G and a partial
isometry G ∈ L (X)⊗̄B(H ), such that GG∗ = 1L (H) ⊗ 1, G∗G = 1L (G) ⊗ 1, and

(∆L (X) ⊗ ι)G = G[13]G[23]

and
α(x) = G∗(1⊗ x)G for all x ∈ B(H ).

We then call G an associated (unitary) left X-representation for G (or a (unitary) left L (X)-
corepresentation for L∞(G)).

One should see the above Theorem as a generalization of the construction of (the cohomology class
of) a 2-cocycle function Ω : G×G→ S1 from a projective representation for a locally compact group
G. In fact, the notion of a 2-cocycle still makes sense in the quantum setting.

Definition 1.6. ([14]) A unitary 2-cocycle for a von Neumann algebraic quantum group (M,∆) is a
unitary Ω ∈M⊗̄M such that

(Ω⊗ 1)(∆⊗ ι)(Ω) = (1⊗ Ω)(ι⊗∆)(Ω).

It turns out that, given such a 2-cocycle, one can then define a von Neumann algebraic linking quantum

groupoid structure for (M,∆) on Q = M ⊗M2(C) =

(
M M
M M

)
by putting

∆Q

(
w x
y z

)
=

(
Ω∆(w)Ω∗ Ω∆(x)

∆(y)Ω∗ ∆(z)

)
,

the existence of invariant weights on (M,∆Ω) (with ∆Ω = Ω∆( · )Ω∗) being the only non-trivial part
to verify (see again [8]). In this way, they allow one to construct new locally compact quantum groups
by a cocycle deformation or twisting (see e.g. [16] and [24] for the construction of some new locally
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compact quantum groups by this procedure; and see [9] and the present paper (Theorem 4.5) for
examples of such a twisting procedure turning the function algebra of a compact quantum group into
the function algebra of a non-compact quantum group).

Conversely, linking quantum groupoids L whose associated linking von Neumann algebra is trivial
(i.e. isomorphic to L (G)⊗M2(C)) are easily seen to arise from a 2-cocycle for L (G), and we will call
such von Neumann algebraic linking quantum groupoids cleft. However, it is important to remark that
the associated C∗-algebraic Morita equivalences are in general not trivial. We further remark that we
do not know of any condition, directly in terms of a projective representation, which guarantees that
the associated von Neumann algebraic linking quantum groupoid will be cleft.

The following lemma will be useful in concretely identifying the group von Neumann algebra of a
l.c. linking quantum groupoid associated to some given projective representation.

Lemma 1.7. Let G be a locally compact quantum group, α a projective right representation of G on
l2(N), and L and G resp. an associated l.c. linking quantum groupoid and X-representation of G. We
write xn = (ι⊗ ωδn,δ0)G ∈ L (X).

Let (Q̃, f) be a linking von Neumann algebra for the von Neumann algebra L (G), and suppose that
(yn) is a sequence of elements in Q̃12 such that y∗myn = x∗mxn for all m,n ∈ N, and for which the set
{ynx | x ∈M,n ∈ N} is σ-weakly dense in Q̃12. Then there exists a unique isomorphism

π : (Q̃, f)→ (L (L), e)

which identifies the canonical projections, pointwise fixes L (G), and such that π(yn) = xn for all
n ∈ N.

Proof. It follows by standard von Neumann algebra techniques that there exists a unique (non-unital)
normal ∗-homomorphic embedding π : Q̃→ L (L) which pointwise fixes L (G) and such that π(yn) =
xn. Then π(f) ≤ e, and we should prove equality. For this it is sufficient to prove that the σ-weakly
closed linear span T of

{xnx | x ∈ L (G), n ∈ N}
equals L (X). But since G is a unitary, we will have

∑
n xnx

∗
n = 1L (H) = e, where the infinite sum is

taken in (say) the σ-weak topology. From this T = L (X) follows.

We will also need the following density result, albeit in a simpler form.

Proposition 1.8. Let L be a l.c. linking quantum groupoid for G. Then the linear span of the set

{∆L (X)(x)(1⊗ y) | x ∈ L (X), y ∈ L (G)}

is σ-weakly dense in L (X)⊗̄L (X).

Proof. We first remark that the σ-weak closed linear span T of the above set equals the one of the set

{∆L (X)(x)(y ⊗ z) | x ∈ L (X), y ∈ L (G)},

using that ∆L (X)(xy) = ∆L (X)(x)∆L (G)(y) for x ∈ L (X) and y ∈ L (G), and the fact that the state-
ment of the proposition holds when replacing (L (X),∆L (X)) by (L (G),∆L (G)) (see [30], Proposition
1.4).

So we know now that T is a σ-weakly closed right L (G)⊗̄L (G)-module. Since the σ-weakly closed
span of T ∗T (resp. TT ∗) contains the unit of L (G)⊗̄L (G) (resp. L (H)⊗̄L (H)), the equality T =
L (X)⊗̄L (X) follows.
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1.2 Co-linking weak Hopf algebras

Definition 1.9. A co-linking weak Hopf algebra consists of four non-trivial unital algebras Hij,
i, j ∈ {0, 1}, and eight unital homomorphisms ∆k

ij : Hij → Hik � Hkj, i, j, k ∈ {0, 1}, satisfying the
coassociativity conditions

(∆l
ik ⊗ ι)∆k

ij = (ι⊗∆k
lj)∆

l
ij , i, j, k, l ∈ {0, 1},

and such that all maps

Hij �Hkj → Hik �Hkj : x⊗ y → ∆k
ij(x)(1⊗ y),

Hij �Hik → Hik �Hkj : x⊗ y → ∆k
ij(x)(y ⊗ 1)

are bijective. (This will imply in particular that the (H i
ii,∆

i
ii) are Hopf algebras.)

If (H0,∆0) and (H1,∆1) are Hopf algebras, we say that the above co-linking weak Hopf algebra is a
co-linking weak Hopf algebra between H0 and H1 when we are also given Hopf algebra isomorphisms
Φ0 : (H0,∆0)→ (H00,∆

0
00) and Φ1 : (H1,∆1)→ (H11,∆

1
11).

The substructure (Hij ,∆
i
ij ,∆

j
ij) is called a bi-Galois object between (Hi,∆i) and (Hj ,∆j).

We call this a weak Hopf algebra because the separate pieces can be grouped together into a weak
Hopf algebra with an invertible antipode ([5]): one takes as the associated algebra E the direct sum
algebra ⊕i,j∈{0,1}Hij , and one defines the (non-unit preserving!) comultiplication ∆E componentwise
as

∆E(xij) = ∆0
ij(xij) + ∆1

ij(xij)

for xij ∈ Hij . One can in fact characterize independently the weak Hopf algebras which appear in
this way (see [10], Chapter 1 for details). They are then algebraic analogues of structures dual to
the von Neumann algebraic linking quantum groupoids of the previous subsection (i.e., one could
picture them intuitively as a space of ‘polynomial functions’ on a linking quantum groupoid). These
dual structures were dealt with on an analytic level in [10] (see also [8]), but we will not be explicitly
concerned with that side of the theory here. We also note that the above definition can be shown to
be equivalent to that of a total Hopf-Galois system, as introduced in [18] (and extending work in [4]).
We finally note that (bi-)Galois objects can also be defined independently (see [37], and [10] for the
correspondence with the above notion).

Notation 1.10. When (Hij ,∆
k
ij) is a co-linking weak Hopf algebra, we will use the Sweedler-like

notation
∆k
ij(z) = z(1)ik ⊗ z(2)kj , z ∈ Hij

for the coproduct.

We remark that the above notion has an obvious generalization to an ‘n×n-co-linking weak Hopf
algebra’ consisting of n2 algebras and n3 comultiplications, or one large weak Hopf algebra with the
Hi at its ‘corners’. We also remark that one can consider co-linking weak Hopf ∗-algebras and bi-
∗-Galois objects, by putting a ∗-structure on the algebras and imposing that it is respected by the
comultiplication maps.

Proposition 1.11. When (Hij ,∆
k
ij) is a co-linking weak Hopf ∗-algebra, there exist unique bijective

anti-homomorphisms
Sij : Hij → Hji,
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each of which we call an antipode, such that for all i, j and x ∈ Hii we have

Sij(x(1)ij)x(2)ji = εii(x) = x(1)ijSji(x(2)ji).

They flip the comultiplication in the sense that

∆k
ji(Sij(x)) = (Skj ⊗ Sik)(∆k,op

ij (x)), for all x ∈ Hij .

Furthermore, we have that for x ∈ Hij,

(Sji(Sij(x)∗))∗ = x.

Proof. This can be pieced together from the results [38] and [5]. In any case, one can easily prove it
by adapting the standard Hopf algebraic techniques.

There is also a counit εE present on the weak Hopf algebra E = ⊕Hij , given by

x→ δijεi(x), x ∈ Hij .

One should however be careful with this notion, as the counit is not a homomorphism in the case of
weak Hopf algebras.

Finally, there is the notion of an ‘adjoint action’ for a co-linking weak Hopf algebra, whose technical
term (referring to bi-Galois objects) is ‘the Miyashita-Ulbrich action’.

Definition 1.12. Let (Hij ,∆
k
ij) be a co-linking weak Hopf algebra. The right Miyashita-Ulbrich

action of (H2,∆2) on H12 is the module algebra structure � on H12 determined by

x� y = S21(y(1)21) · x · y(2)12, x ∈ H12, y ∈ H22.

In case there is a compatible ∗-structure, we note that then

x∗ � y = (x� S(y)∗)∗,

by the ∗-identity for the antipode given in Proposition 1.11, i.e. H12 is a module ∗-algebra for H22.

1.3 On certain pairings between algebras

Definition 1.13. The ∗-algebra of polynomial functions on G = SUq(2) ([44]) is defined as the unital
∗-algebra

Pol(G) = C[G] = Polq(+,+) = Pol(SUq(2)),

generated (as a unital ∗-algebra) by two generators a+ and b+ satisfying the relations
a∗+a+ + b∗+b+ = 1 a+b+ = q b+a+

a+a
∗
+ + q2b+b

∗
+ = 1 a∗+b+ = q−1b+a

∗
+

b+b
∗
+ = b∗+b+.

We consider it as a Hopf ∗-algebra by endowing it with the comultiplication map ∆+ satisfying{
∆+(a+) = a+ ⊗ a+ + (−qb∗+)⊗ b+
∆+(b+) = b+ ⊗ a+ + a∗+ ⊗ b+.

The ∗-algebra of polynomial functions on the quantum Ẽ(2) group ([40],[7],[26]) is defined as the
universal unital ∗-algebra

Pol(H) = C[H] = Polq(0, 0) = Pol(Ẽq(2))
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generated by elements a0 and b0, subject to the relations
a∗0a0 = 1 a0b0 = q b0a0

a0a
∗
0 = 1 a∗0b0 = q−1b0a

∗
0

b0b
∗
0 = b∗0b0.

We can make it into a Hopf ∗-algebra by endowing it with the comultiplication map ∆0 satisfying

∆0(a0) = a0 ⊗ a0

∆0(b0) = b0 ⊗ a0 + a∗0 ⊗ b0.

We note that

SU(2) = {
(
a −b
b a

)
| |a|2 + |b|2 = 1},

Ẽ(2) ∼= {
(
a 0
b a

)
| |a|2 = 1},

and

SU(1, 1) = {
(
a b
b a

)
| |a|2 − |b|2 = 1},

are precisely the Lie subgroups of SL(2,C) keeping invariant the hermitian forms on C2 with symbol
(++), (+0) and (+−). This is one of the reasons for using the ‘sign notation’ in the above and
subsequent definitions.

Definition 1.14. The quantized universal enveloping algebra of su(2) ([25]) is defined as the universal
algebra

Uq(G) = Uq(+,+) = Uq(su(2))

generated by four elements K+,K
−1
+ , E+ and F+ satisfying the commutation relations

K−1
+ K+ = 1 = K+K

−1
+ , K+E+ = qE+K+, K+F+ = q−1F+K+,

and
[E+, F+] = λ(K2

+ −K−2
+ ),

where we recall that λ = (q − q−1)−1.

The quantized universal enveloping algebra of the Lie algebra e(2) ([40]) is defined as the universal
algebra

Uq(H) = Uq(0, 0) = Uq(e(2))

generated by four elements K0,K
−1
0 , E0 and F0 satisfying the commutation relations

K−1
0 K0 = 1 = K0K

−1
0 , K0E0 = qE0K0, K0F0 = q−1F0K0,

and
[E0, F0] = 0.

Then both Uq(+,+) and Uq(0, 0) can be made into Hopf ∗-algebras by putting K = K∗, E∗ = F and

∆(E) = E ⊗K +K−1 ⊗ E,

∆(K) = K ⊗K,

and then the antipode satisfies S(K) = K−1, S(E) = −qE and S(F ) = −q−1F .
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Proposition 1.15. For µ ∈ {0,+}, there is a pairing between the Hopf ∗-algebras Uq(µ) and Polq(µ),
uniquely determined by the formulas

〈K, a〉 = q−1/2, 〈K, a∗〉 = q1/2, 〈E, b〉 = 1, 〈F, (−qb∗)〉 = 1,

while all other possible pairings between generators are assigned zero.

Proof. For µ = +, this is well-known (see [25], Theorem 21). In any case, one can check it for both
cases by using the argument at the beginning of section 4 of [41].

To be clear, the fact that this is a pairing of Hopf ∗-algebras ([41]) means that the associated maps

Polq(µ)→ Uq(µ)◦ and Uq(µ)→ Polq(µ)◦

are unital homomorphisms (where the dual is given the convolution product), satisfying

〈x∗, y〉 = 〈x, S(y)∗〉, 〈x, y∗〉 = 〈S(x)∗, y〉.

Using an argument similar to the proof of Theorem 4.21 of [25], one can show further that these
pairings are non-degenerate.

Although we will not actually need the following proposition in its full generality, it provides a
convenient reference for (easier) computations which otherwise would have to be treated separately.

Proposition 1.16. For n ∈ N, denote by Gn(q) the number

Gn(q) =
(q2; q2)n

q
1
2
n(n−1)(1− q2)n

.

Then we have for s, r, t, n, l ≥ 0 and m ∈ Z that

〈Km
µ E

n
µF

l
µ, a

r
µb
s
µ(−qb∗µ)t〉 = δs,nδt,lq

1
2
m(−r+s−t)q

r
2

(n+l)Gn(q)Gl(q),

in Polq(µ), µ ∈ {0,+}.

Furthermore, for Polq(0) this formula remains valid when r ∈ Z.

Proof. We first argue that the above expression (for r ∈ N) will be the same for both µ ∈ {0,+}.
Since the comultiplication of Uq(µ) restricts to the algebras generated by K,K−1 and E, resp. K,K−1

and F , and since the multiplication rules between K,K−1 and E, resp. K,K−1 and F are the same
in all cases, we only have to show that 〈KmEnF l, x〉, with x ∈ {a, b,−qb∗}, is the same in all cases.

This is verified by direct computation, expanding the x to ∆(m+n+l)(x) and checking that only for
one of the resulting terms, the pairing gives a non-zero number. Indeed, in case x = a, we see in this
way that the above pairing is only non-zero in case n = l = 0, in which case it equals q−m/2. In case
x = b, we get the number qm/2, while for x = −qb∗, we get again q−m/2.

The general formula in (1) then follows from Proposition 22 in [25], where the case µ = + is treated.

Since E and F commute in case µ = 0, the final statement is also immediate by applying the ∗-
operation (see also [26], Proposition 3.2).
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2 The action on the standard Podleś sphere as a projec-

tive representation of SUq(2)

2.1 Some facts on the standard Podleś sphere

Definition 2.1. ([44],[45]) We denote by C(G) = C(SUq(2)) the (unique) C∗-algebraic quantum
group associated to Pol(SUq(2)), by L∞(G) = L∞(SUq(2)) its associated von Neumann algebraic
quantum group (containing then Pol(SUq(2)) and C(SUq(2)) as sub-∗-algebras), and by ϕ the normal
invariant state on the latter.

Definition 2.2. The ∗-algebra Pol(S2
q0) of polynomial functions on the standard Podleś sphere S2

q0

is defined as the universal unital ∗-algebra generated by elements X and Z satisfying the commutation
relations

Z∗ = Z, XZ = q2ZX, X∗Z = q−2ZX∗

and

X∗X = Z − Z2,

XX∗ = q2Z − q4Z2.

The C∗-algebra C(S2
q0) of continuous functions on the standard Podleś sphere S2

q0 is defined as the

universal enveloping C∗-algebra of Pol(S2
q0).

It is well-known that C(S2
q0) is isomorphic to B0(l2(N)) + C1. A concrete identification is given by

the unital ∗-representation

X →
∑
k∈N0

qk
√

1− q2k ek−1,k

Z →
∑
k∈N

q2k ekk,

and we will then always regard X and Z as these concrete operators.

It is also well-known that Pol(S2
q0) ⊆ C(S2

q0) can be imbedded into Pol(SUq(2)) ⊆ C(SUq(2)) by the
map

X → X̃ = qb∗+a+,

Z → Z̃ = b∗+b+.

In fact, the range then becomes a (closed) left ∗-coideal, which coincides with the ∗-algebra of invariants
for the action of the circle group S1 on Pol(SUq(2)) (resp. C(SUq(2))) determined by θr(a+) = e2πira+,
θr(b+) = e2πirb+. We denote the corresponding continuous left action of SUq(2) on S2

q0 by α.

Finally, note that we get a state ω on C(S2
q0) by integrating out the action:

ω(x)1 = (ϕ⊗ ι)α(x).

Then we can take the GNS-construction πω with respect to this state, and obtain the von Neumann
algebra L∞(S2

q0) = πω(S2
q0)′′, whose associated normal state we again denote as ω. It is then easy

to verify that L∞(S2
q0) can be identified with B(l2(N)) in such a way as to extend the previous

identification of C(S2
q0) with B0(N) +C1. The functional ω ∈ L∞(S2

q0)∗ then coincides with Tr( ·D),

where D is the trace class operator (1 − q2)Diag(q2k) (one can prove this for example by using for
example the techniques from the appendix of [45]).
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The action α can then also be extended to an (ergodic) action

α : L∞(S2
q0)→ L∞(SUq(2))⊗̄L∞(S2

q0),

which hence determines a unitary projective right representation of SUq(2). In the next sections, we
find an explicit form for the associated von Neumann algebraic linking quantum groupoid

L (L) =

(
L (H) L (X)

L (X) L (G)

)
,

where we recall that G = ŜUq(2). Note that by Proposition 10.3.4 of [10], we already know that H
will be a non-discrete locally compact quantum group (and thus H not compact). We show in the
final section that L (H) = L∞(H) is indeed L∞(Ẽq(2)), justifying the notation used in the previous
subsection.

2.2 The standard Podleś sphere as a subquotient of a bi-Galois ob-
ject

The results in this subsection are dealt with in more detail in [11].

Definition 2.3. Let µ, ν be two real numbers. We define Uq(µ, ν) as the universal ∗-algebra generated
by four elements K,K−1, E and F satisfying the commutation relations

K−1K = 1 = KK−1, KE = qEK, KF = q−1FK,

K∗ = K, E∗ = F

and
[E,F ] = λ(µK2 − νK−2).

Lemma 2.4. There exists a family of unital ∗-algebra homomorphisms

∆υ
µν : Uq(µ, ν)→ Uq(µ, υ)� Uq(υ, ν)

such that
∆υ
µν(Eµν) = Eµυ ⊗Kυν +K−1

µυ ⊗ Eυν ,

∆υ
µν(Kµν) = Kµυ ⊗Kυν .

Proof. By direct verification.

It is not difficult to see that for any µ > 0, we have (Uq(µ, µ),∆µ
µµ) ∼= (Uq(su(2)),∆), so we write 1 = +

again. We note further that for µ < 0 we will have (Uq(µ, µ),∆µ
µµ) ∼= (Uq(−),∆) = (Uq(su(1, 1)),∆),

the quantized universal enveloping algebra associated to su(1, 1) ([25]). But as we remarked in the
introduction, we will treat this case in another paper. Note also that in the contraction procedure
([7]), one considers Uq(0, 0) as limµ→0 Uq(µ, µ).

To be more explicit, we have the respective Lie brackets

[E++, F++] = λ(K2
++ −K−2

++),

[E0+, F0+] = λ( −K−2
0+ ),

[E+0, F+0] = λ(K2
+0 ),

[E00, F00] = 0,

between the generators E and F , which is another reason for using the sign notation.
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Lemma 2.5. The four-tuple (Uq(µ, ν),∆υ
µν) with µ, ν ∈ {0,+} is a co-linking weak Hopf ∗-algebra.

Remark: The fact that (Uq(0,+),∆0
0+,∆

+
0+) is a bi-Galois object was first observed in [19], Lemma

16. Since it preserves the ∗-structure, it is automatically a bi-∗-Galois object.

Proof. Define antipode maps Sµν : Uq(µ, ν)→ Uq(ν, µ) by

Sµν(Eµν) = −qEνµ,
Sµν(Fµν) = −q−1Fνµ,

Sµν(Kµν) = K−1
νµ .

Using the natural generalizations of the Hopf algebraic formulas concerning antipode and co-unit,
one then easily constructs explicit inverses for the canonical maps appearing in the definition of a
co-linking weak Hopf ∗-algebra. See also [11], Proposition 1.8.

Definition 2.6. We define the Casimir element of Uq(µ, ν) to be the element

Cµν = EF + λ2(q−1µK2 + qνK−2)

= FE + λ2(qµK2 + q−1νK−2).

As in the quantized universal enveloping algebra case, we have the following easy lemma.

Lemma 2.7. The Casimir element Cµν is a self-adjoint element in the center of Uq(µ, ν).

Proof. The fact that Cµν is self-adjoint is apparent on sight, while the statement that it lies in the
center is immediate by checking that it commutes with K, E and F .

When τ is a real number, we will denote by Aτµν the quotient of Uq(µ, ν) by the relation Cµν = τ .

We note now that each Aτµν is endowed with more structure: since the right Miyashita-Ulbrich action
by Uq(ν) on Uq(µ, ν) is implemented by left and right multiplication maps, the ideal generated by
the Casimir element Cµν is invariant under it. Hence this action descends to a right Uq(ν)-module
∗-algebra structure on Aτµν .

Take τ = q−1λ2 (in fact, any non-zero number will work, but this value gives the nicest normalization),
and then simply denote Aτ0+ as A0+. The following is proven in [11] in the left setting. (We could also
invite the reader to carry out the computations himself to experience the enjoyment of seeing terms
cancel out.)

Proposition 2.8. There exists a faithful unital ∗-homomorphic embedding of Pol(S2
q0) into A0+ by

∗-homomorphically extending the application

X → X̆ = q1/2(q−1 − q)E0+K
−1
0+ ,

Z → Z̆ = K−2
0+ ,

composed with the projection from Uq(0,+) to A0+. Moreover, endowing Pol(S2
q0) with the right

Uq(+)-module structure
y � x = (〈 · , x〉 ⊗ ι)(α(y)),

with 〈 · , · 〉 the pairing from Proposition 1.15, this is a right Uq(+)-module map.
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3 Determining the quantum torsor X.

3.1 The algebraic setting

Denote E = ⊕
µ,ν∈{0,+}

Uq(µ, ν), with the Uq(µ, ν) as defined in the previous section. We can then write

the dual of E in the form

E◦ =

(
Uq(0, 0)◦ Uq(0,+)◦

Uq(+, 0)◦ Uq(+,+)◦

)
,

since we can endow it with the convolution multiplication dual to the comultiplication of E, and
this will be of the form of a 2-by-2-matrix multiplication. More precisely, looking at the structure
piecewise, we have the multiplication maps

Uq(µ, υ)◦ � Uq(υ, ν)◦ → Uq(µ, ν)◦ : ω1 ⊗ ω2 → ω1 · ω2 :

(ω1 · ω2)(x) = (ω1 ⊗ ω2)(∆υ
µν(x)), x ∈ Uq(µ, ν).

We can then make it into a ∗-algebra by the piecewise ∗-operation

∗ : Uq(µ, ν)◦ → Uq(ν, µ)◦ :

ω∗(x) = ω(Sνµ(x)∗), ω ∈ Uq(µ, ν)◦, x ∈ Uq(ν, µ).

Note in particular then that Uq(µ, ν) is a Uq(µ)-Uq(ν)-bimodule.

Definition 3.1. We define ϑ+0 (resp. ϑ0+) as the element in Uq(+, 0)◦ (resp. Uq(0,+)◦) such that

〈ϑ+0,K
m
+0E

n
+0F

l
+0〉 = δn,0δl,0

(resp. 〈ϑ0+,K
m
0+E

n
0+F

l
0+〉 = δn,0δl,0).

Proposition 3.2. The following commutation relations hold:

a+ϑ+0 = ϑ+0a0, b+ϑ+0 = ϑ+0b0, b∗+ϑ+0 = ϑ+0b
∗
0,

a∗+ϑ+0 = ϑ+0(1− b∗0b0)a∗0 = (1− b∗+b+)ϑ+0a
∗
0.

Proof. It is immediate to see that for any x ∈ Polq(+), we have

〈xϑ+0,K
m
+0E

n
+0F

l
+0〉 = 〈x,Km

+E
n
+F

l
+〉,

and similarly for x ∈ Polq(0) we have

〈ϑ+0x,K
m
+0E

n
+0F

l
+0〉 = 〈x,Km

0 E
n
0F

l
0〉.

Then the commutation relations follow immediately from Proposition 1.16 (where only the pairing
with a∗+ is not stated, but this is easily computed by hand or by referring to [25], Proposition 22).

We now remark that the multiplication of the co-linking weak Hopf algebra E dualizes to ‘comulti-
plication maps’

∆µν : Uq(µ, ν)◦ → (Uq(µ, ν)� Uq(µ, ν))◦

on the summands Uq(µ, ν)◦ of E◦. However, for the off-diagonal parts there does not seem to be
a good ‘reduced sub-structure’ to which it restricts to a genuine coalgebra structure (i.e. with the
comultiplication ending up in an algebraic tensor product). In fact, we have the following proposition.
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Proposition 3.3. The following identities hold, where Eq2 is regarded as a power series, and with
infinite sums converging in the weak topology:

1. ϑ0+ϑ+0 = 1+, ϑ+0ϑ0+ = 10.

2. ϑ∗+0 = ϑ0+Eq2(−q2b∗+b+),

3. ∆0+(ϑ∗+0) =
∑∞

p=0(q2; q2)−1
p ((a0)pϑ∗+0b

p
+ ⊗ (a0)pϑ∗+0(−qb∗+)p).

4. (S+0(ϑ+0))∗ = S0+(ϑ∗+0) = ϑ+0.

Remark: The antipode S+0 on Uq(+, 0)◦ in the final expression is of course defined by the formula

〈S+0(ω), y〉 = 〈ω, S0+(y)〉, ω ∈ Uq(+, 0)◦, y ∈ Uq(0,+),

and similarly for S0+.

Proof. The first identity is immediate.

We now compute first the final identities. We have

〈(S+0(ϑ+0))∗,Km
+0E

n
+0F

l
+0〉 = 〈ϑ+0, (K

m
+0E

n
+0F

l
+0)∗〉

= 〈ϑ+0, E
l
+0F

n
+0K

m
+0〉

= δn,0δl,0

= 〈ϑ+0,K
m
+0E

n
+0F

l
+0〉,

and similarly for the other one.

For the remaining two identities, we first remark that

〈ϑ+0, F
l
+0E

n
+0〉 = δnl q

n (q2; q2)n
(1− q2)2n

,

which is easily computed by induction (see also Lemma 3.2.2.(ii) in [33]). Using the full formula for
the pairing from Proposition 1.16, the second and third identity are then straightforwardly computed
by taking the pairing with an element Km

0+E
n
0+F

l
0+ or Km

0+E
n
0+F

l
0+ ⊗Km′

0+E
n′
0+F

l′
0+ (first transporting

b+ and b∗+ across θ∗+0 into b0 and b∗0 in the second expression, which is allowed by Proposition 3.2).

Remark: The element ∆+0(ϑ+0) is an (invertible) algebraic 2-cocycle functional ω associated the bi-
Galois object Uq(+, 0) (see [24] and [1]). But we see from the above Proposition that it is not unitary.

However, it does satisfy the formula ω(x∗, y∗) = ω(y, x), i.e. is real in the terminology of [33], Proposi-
tion 2.3.7. We will see in the next subsection that in the analytic picture, ω can be implemented by an
operator, but this operator will no longer be invertible. Since the 2-cocycle twisting of von Neumann
algebraic quantum groups has only been studied in full generality for unitary 2-cocycles, we thus have
resorted to the more general theory of Morita equivalence of locally compact quantum groups, even
though, in the end, our example will be of the form of a unitary 2-cocycle twist (but in an unnatural
way). This final result then leads us again to a question concerning the 2-cocycle functional ω: will it
be coboundary equivalent to a unitary 2-cocycle functional? Given the unnaturality of our operator
algebraic 2-cocycle, this is not at all clear.

In the next subsection, we will also need the following easy result. We first introduce a defini-
tion/notation.

Definition 3.4. We define C[X] as the linear span of the set

{ar0ϑ∗+0b
s
+(b∗+)t | r ∈ Z, s, t ∈ N}.
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Lemma 3.5. The vector space C[X] is a right C[G]-module with the set

{ar0ϑ∗+0b
s
+(b∗+)t | r ∈ Z, s, t ∈ N}

as a vector space basis.

Proof. Using the commutation relations in Proposition 3.2, one checks that C[X] is globally invari-
ant under right multiplication with the generators of C[G] = Pol(+). Hence it is a right C[G]-module.

For the linear independence statement, we will give a proof which can be recycled later on. Sup-
pose that

∑
r,s,t cr,s,ta

r
0ϑ
∗
+0b

s
+(b∗+)t = 0, where all but a finite number of cr,s,t are zero. Multiplying

to the left with a high enough power of a∗0, we may assume that cr,s,t = 0 for r > 0. Then by
Lemma 3.2, we have

∑
r,s,t∈N c−r,s,tϑ

∗
+0(a∗+)rbs+(b∗+)t = 0. Multiplying to the left with ϑ∗0+, we have∑

r,s,t c−r,s,t(a
∗
+)rbs+(b∗+)t = 0 by the first identity in Proposition 3.3. Since it is well-known that the

(a∗+)rbs+(b∗+)t are linearly independent, this proves that all cr,s,t are zero.

We will need the following computation in the next part.

Lemma 3.6. Let m ∈ Z and s, n, l ∈ N. Then

〈as0ϑ∗+0b
s
+,K

m
0+F

l
0+E

n
0+〉 = δl,0δs,nq

n/2(q2; q2)n(1− q2)−n.

Proof. First moving the ∗ to the other side as S( · )∗, this again follows immediately from Lemma
3.2 (moving b+ across ϑ+0 into b0, and then deleting ϑ+0 as to obtain a pairing between elements of
Pol(0) and Uq(0)), and then applying the formula in Proposition 1.16.

3.2 The analytic setting

It is well-known that L∞(SUq(2)) can be represented faithfully on l2(N)⊗ l2(Z) by the representation

a+ → (
∑
k∈N0

√
1− q2kek−1,k)⊗ 1,

b+ → (
∑
k∈N

qkekk)⊗ S,

with S denoting the bilateral shift forward. We will in the following always identify a+ and b+ with
their images in this representation. We then further extend our sign notation.

Notation 3.7. We denote
H++ = l2(N)⊗ l2(Z)

and
H0+ = l2(Z)⊗ l2(Z).

Definition 3.8. We define v0 as the unitary operator S∗ ⊗ 1 on H0+, with S∗ the backward bilateral
shift.

We define L0+ as the bounded operator H+ →H0+ determined by

L0+(e+
n ⊗ e+

k ) =

(
(q2; q2)∞
(q2; q2)n

)1/2

e0+
n ⊗ e0+

k .
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More succinctly, L0+ = uEq2(−q2b∗+b+)1/2 = u(q2b∗+b+; q2)
1/2
∞ , with u the isometric imbedding

u : H + →H 0+ : e+
n ⊗ e+

k → e0+
n ⊗ e0+

k .

We remark that this operator (or rather L0+u
∗) also appears in [48], as the operator t1/2 (formula

(28)).

Lemma 3.9. The following commutation relations hold:

L0+a
∗
+ = v∗0L0+,

L0+a+ = v0L0+(1− b∗+b+).

Proof. This follows by an easy computation, which we leave to the reader.

By induction, we then get that
L0+a

n
+ = vn0L0+(b∗+b+; q−2)n.

Note however that we cannot move v0 across L0+, as v0 shifts the range of L0+ downwards. Also
note that 1 − b∗+b+ has the same kernel as a+, which is part of what makes the above commutation
relation work.

Lemma 3.10. The linear span of {vr0L0+b
s
+(b∗+)t | r ∈ Z, s, t ∈ N} is a right Pol(SUq(2))-module,

isomorphic to C[X] by the map

π : ar0ϑ
∗
+0b

s
+(b∗+)t → vr0L0+b

s
+(b∗+)t.

Proof. By the commutation relations of Lemma 3.9, and because L∗0+L0+ is invertible, we can simply
copy the proof of Lemma 3.5, replacing ϑ∗+0 by L0+ and a0 by v0, to get that {vr0L0+b

s
+(b∗+)t | r ∈

Z, s, t ∈ N} is a basis for its linear span, and to see that this linear span is a right Pol(SUq(2))-module
by right multiplication. By the same commutation relations, the existence of the isomorphism π is
then also immediate.

In the following, we will drop the symbol π for the isomorphism, and thus identify C[X] with a space of
operators H+ →H0+. However, we keep using the distinct symbols L0+, ϑ0+, . . . to clarify whether
we consider something as an operator or a functional.

Define now Q̃ as the linking von Neumann algebra(
B(l2(Z)) B(l2(N), l2(Z))

B(l2(Z), l2(N)) B(l2(N))

)
⊗̄L (Z),

represented on

(
H0+

H+

)
. We may identify Q̃22 with L∞(SUq(2)). Note further then that C[X] is

σ-weakly dense in Q̃12.

Proposition 3.11. Define
yn = (q2; q2)−1/2

n vn0L0+b
n
+ ∈ Q̃12.

Then this sequence satisfies the conditions of Lemma 1.7 with respect to the coaction α of L∞(SUq(2))
on B(l2(N)) ∼= L∞(S2

q0).
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Proof. The density condition in that lemma is easily verified to hold true. We only have to prove
then the identities x∗mxn = y∗myn.

First observe that, since α(x) = G∗(1⊗ x)G for x ∈ L∞(S2
0q), we will have

α(e00) =
∑
m,n

x∗mxn ⊗ emn

as a σ-weakly converging sum, so that

x∗mxn = (ι⊗ ωδn,δm)α(e00).

Now e00 = limn→∞ Z
n in norm. Taking the copy Z̃ = b∗+b+ of Z in L∞(SUq(2)), we can write

α(Z)n ∼= ∆(Z̃)n

= ∆(b∗+)n∆(b+)n

=
n∑

m,k=0

[
n
m

]
q2

[
n
k

]
q2

(b∗+)n−kak+(a∗+)mbn−m+ ⊗ (a∗+)n−k(b∗+)kbm+a
n−m
+ ,

where we have used the well-known formula for the n-th power of q2-commuting variables.

Now we remark that in fact C(SUq(2)) ⊆ L∞(S2
0q)⊗ C(S1) ∼= C(S1,L∞(S2

0q)), and that we have a

surjective ∗-homomorphism θ from C(SUq(2)) to L∞(S2
0q) by evaluating in zero. Denoting

A =
∑
k∈N0

√
1− q2kek−1,k,

B = Z1/2

as elements in L∞(S2
0q), we have θ(b+) = B and θ(a+) = A, so that θ(Z̃) = Z and θ(X̃) = X. So

α(Z)n =

n∑
m,k=0

[
n
m

]
q2

[
n
k

]
q2

(b∗+)n−kak+(a∗+)mbn−m+ ⊗ (A∗)n−kBkBmAn−m,

and then, for s, t ∈ N and n ≥ s, t,

(ι⊗ ωδt,δs)(α(Z)n) =
n∑

m=n−t

n∑
k=n−s

(q2; q2)
1/2
t

(q2; q2)
1/2
t−(n−m)

· (q2; q2)
1/2
s

(q2; q2)
1/2
s−(n−k)

qm(t−(n−m))qk(s−(n−k)) ·

δt−(n−m),s−(n−k)

[
n
m

]
q2

[
n
k

]
q2

(b∗+)n−kak+(a∗+)mbn−m+

=

min{s,t}∑
r=0

(q2; q2)
1/2
t

(q2; q2)
1/2
r

· (q2; q2)
1/2
s

(q2; q2)
1/2
r

qr(n−(t−r))qr(n−(s−r)) ·[
n

n− (t− r)

]
q2

[
n

n− (s− r)

]
q2

(b∗+)s−ra
n−(s−r)
+ (a∗+)n−(t−r)bt−r+ .

Taking the limit n→∞, we see that only the term r = 0 survives, and we finally get

x∗sxt = (q2; q2)
−1/2
t (q2; q2)−1/2

s (b∗+)s( lim
n→∞

an−s+ (a∗+)n−t)bt+.

19



On the other hand, by Lemma 3.9,

y∗syt = (q2; q2)−1/2
s (q2; q2)

−1/2
t (b∗+)sL∗0+(v∗0)svt0L0+b

t
+

= (q2; q2)−1/2
s (q2; q2)

−1/2
t (b∗+)sat+L

∗
0+L0+(a∗+)sbt+

= (q2; q2)−1/2
s (q2; q2)

−1/2
t (b∗+)sat+(q2b∗+b+; q2)∞(a∗+)sbt+.

An easy computation reveals then that

lim
n→∞

an−s+ (a∗+)n−t = at+(q2b∗+b+; q2)∞(a∗+)s,

which finishes the proof.

Remark: The value of α(e00) could also have been derived directly from the formula for ∆(e00) in [31]
(using Theorem 4.1 and formula (4.7)). However, our proof is somewhat easier, and avoids for exam-
ple transformation laws for basic hypergeometric series, instead using only very elementary q-analysis.

By the previous proposition and Lemma 1.7, we may thus identify Q̃ with L (L) in the foregoing
manner, and we will drop the distinction from now on.

We can now make a ∗-representation Θ of Uq(0,+) on the pre-Hilbert space C[N] ⊆ l2(N) consisting
of finite linear combinations of the basis vectors, uniquely determined by the properties that Θ(K0+)
is a positive operator and such that, using the notation of Proposition 2.8,

Θ(X̆) = X|C[N] and Θ(Z̆) = Z|C[N].

To wit, the image of K0+ thus becomes the diagonal operator for which Θ(K0+)en = q−nen.

We recall that we denote by G the X-representation of SUq(2) associated to the projective repre-
sentation α (see Theorem 1.5). In the following proposition, we write Gr,s ∈ L (X) for the element
(ι⊗ ωδs,δr)(G), so then

G =
∑
r,s∈N

Gr,s ⊗ ers

in the σ-weak topology on L (X)⊗̄B(l2(N)).

Proposition 3.12. For all r, s ∈ N, we have that Gr,s ∈ C[X], and

〈Gr,s, y〉 = Θ(y)r,s for all y ∈ Uq(0,+).

Proof. We give a proof by induction on r.

By Proposition 3.11, the element G0,s equals (q2; q2)
−1/2
s vs0L0+b

s
+, which belongs to C[X]. So we

should see if
〈as0ϑ∗+0b

s
+, y〉 = (q2; q2)1/2

s Θ(y)0,s

for y ∈ Uq(0,+).

Choose y of the form Km
0+F

l
0+E

n
0+ for m ∈ Z, n, l ∈ N. Then

〈as0ϑ∗+0b
s
+,K

m
0+F

l
0+E

n
0+〉 = δl,0δs,nq

n/2(q2; q2)n(1− q2)−n

by Lemma 3.6.
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On the other hand, we have that

Θ(Km
0+F

l
0+E

n
0+)0,s = ωδs,δ0(Z−

m
2 (−q−1/2λZ−1/2X∗)l(−q−1/2λXZ−1/2)n)

= δl,0δs,n(−1)nq−n/2λnq−
n(n+1)

2 ωδn,δ0(Xn)

= δl,0δs,nq
−n/2(q−1 − q)−nq−

n(n+1)
2 ωδn,δ0(Xn)

= δl,0δs,nq
−n/2(q−1 − q)−nq−

n(n+1)
2 q

n(n+1)
2 (q2; q2)1/2

n

= δl,0δs,nq
n/2(1− q2)−n(q2; q2)1/2

n .

This proves the case r = 0.

Now suppose that the condition and formula hold for some r and all s. Then from the fact that

(1⊗X)G = Gα(X),

we conclude that

Gr+1,t = q−(r+1)(1− q2(r+1))−1/2
∑
s

ωδt,δs(X(0)) Gr,sX(−1),

where we remark that there are only finitely many non-zero terms in the right hand side. From this, we
already see that Gr+1,t lies in C[X]. Using Proposition 2.8, we further compute that for x ∈ Uq(0,+),
we have

〈
∑
s

ωδt,δs(X(0)) Gr,sX(−1), x〉 =
∑
s

ωδt,δs(X(0)) 〈Gr,s, x(1)0+〉 〈X(−1), x(2)+〉

=
∑
s

ωδt,δs(X � x(2)+) Θ(x(1)0+)r,s

=
∑
s

Θ(X̆ � x(2)+)s,t Θ(x(1)0+)r,s

= Θ(x(1)0+S+0(x(2)+0) X̆ x(3)0+)r,t

= Θ(X̆x)r,t

= (XΘ(x))r,t

= qr+1(1− q2(r+1))1/2Θ(x)r+1,t.

This concludes the proof.

We can then use this proposition to explicitly compute the comultiplication ∆0+ on L (X).

Theorem 3.13. The comultiplication ∆0+ on L (X) is determined on C[X] by the formula

∆0+(vr0L0+) = (vr0 ⊗ vr0) · (
∞∑
p=0

(q2; q2)−1
p vp0L0+b

p
+ ⊗ v

p
0L0+(−qb∗+)p),

where the sum in the right hand side converges in norm.

Proof. The norm-convergence of the right hand side expression is of course immediate.
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We first prove the identity part of the theorem in the case r = 0. We make the following computation:
for x ∈ Uq(0,+), and considering again the ∗-representation Θ introduced before Proposition 3.12, we
have, by that same proposition,

Θ(x)r,0 = Θ(x∗)0,r

= (q2; q2)−1/2
r 〈ar0ϑ∗+0b

r
+, x

∗〉
= (q2; q2)−1/2

r 〈(S0+(ar0ϑ
∗
0+b

r
+))∗, x〉

= (q2; q2)−1/2
r (−q)r〈ar0ϑ∗0+(b∗+)r, x〉,

where we used the final identity in 3.3 for the last step. Hence

Gr,0 = (q2; q2)−1/2
r vr0L+0(−qb∗+)r.

Since L0+ = G00 and ∆0+(G00) =
∑

p∈N G0p ⊗ Gp0 in the σ-weak topology, we have proven the stated
identity in case r = 0.

Now we go on to the general case. It is sufficient to show that

∆0+(vr0L0+b
r
+) = (vr0 ⊗ vr0) · (

∞∑
p=0

(q2; q2)−1
p vp0L0+b

p
0 ⊗ v

p
0L0+(−qb∗+)p) ·∆+(br+).

Note then that
vr0L0+b

r
+ = (q2; q2)1/2

r G0,r,

so since (∆0+ ⊗ ι)G = G[13]G[23], we have

∆0+(vr0L0+b
r
+) = (q2; q2)1/2

r

∑
t

G0,t ⊗ Gt,r

= (q2; q2)1/2
r

∑
t

(q2; q2)
−1/2
t vt0L0+b

t
+ ⊗ Gt,r,

the sums converging σ-weakly. Now Gt,r is in C[X] by the previous proposition. It is also not hard to
see, using induction and the first commutation relation of Lemma 3.9, that the expression

(vr0 ⊗ vr0) · (
∞∑
t=0

(q2; q2)−1
t vt0L0+b

t
+ ⊗ vt0L0+(−qb∗+)t) ·∆+(br+)

can be written in the form ∑
t

(q2; q2)
−1/2
t vt0L0+b

t
+ ⊗ ft,r,

with ft,r ∈ C[X] and the sum σ-weakly converging again. We then have to prove that

ft,r = (q2; q2)1/2
r Gt,r.

For this, it is enough to prove that

〈ft,r, x〉 = (q2; q2)1/2
r 〈Gt,r, x〉 for all x ∈ Uq(0,+).

Now for each y ∈ Uq(0,+) the pairing 〈at0ϑ∗+0b
t
+, y〉 is only non-zero for finitely many t, so both∑

t

(q2; q2)
−1/2
t at0ϑ

∗
+0b

t ⊗ ft,r and (q2; q2)1/2
r

∑
t

G0,t ⊗ Gt,r
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make sense as weakly convergent sums in the vector space dual (Uq(0,+) � Uq(0,+))◦. Since there
exist elements ys ∈ Uq(0,+) such that

〈at0ϑ∗+0b
t
+, ys〉 = δs,t,

it is then sufficient to prove that the above expressions are equal as functionals on Uq(0,+)�Uq(0,+).

But for x, y ∈ Uq(0,+), we have

(q2; q2)1/2
r 〈

∑
t

G0,t ⊗ Gt,r, x⊗ y〉 = (q2; q2)1/2
r

∑
t

〈G0,t, x〉 〈Gt,r, y〉

= (q2; q2)1/2
r

∑
t

Θ(x)0,tΘ(y)t,r

= (q2; q2)1/2
r Θ(xy)0,r

= 〈ar0ϑ∗+0b
r
+, xy〉

on the one hand, while, since multiplication is separately continuous in each of its arguments in the
weak topology,

〈
∑
t

at0ϑ
∗
+0b

t
+ ⊗ ft,r, x⊗ y〉 = 〈(ar0 ⊗ ar0) · (

∞∑
t=0

(q2; q2)−1
t at0ϑ

∗
+0b

t
+ ⊗ at0ϑ∗+0(−qb∗+)t) ·∆+(br+), x⊗ y〉

= 〈∆0(ar0)∆0+(ϑ∗+0)∆+(br+), x⊗ y〉
= 〈∆0+(ar0ϑ

∗
+0b

r
+), x⊗ y〉

= 〈ar0ϑ∗+0b
r
+, xy〉.

This concludes the proof.

Remark: The operator ∆0+(L0+) also appears implicitly in [48]: the operator X defined in formula
(29) there is precisely (|L0+|−1/2⊗|L0+|−1/2)∆0+(L0+)∗. In fact, another formula for this operator is
given there, which could be used to give a more direct proof that this element satisfies a coassociativity
condition.

Let us state here, for completeness, the explicit form of the other entries of G. We will not present
the detailed, computational proof, which can be carried out either by comparing the second factors in
the expressions ∆0+(G0,s) =

∑
t G0,t ⊗ Gt,s by means of Theorem 3.13, or by using Proposition 3.12.

Denote by pn(x; a, 0 | q) the Wall polynomial of degree n with parameter value a; so

pn(x; a, 0 | q) = 2ϕ1(q−n, 0; qa | q, qx),

using the standard notation for q-hypergeometric functions (see [17]). For t ≤ s, we then have

Gt,s = qt(t−s)
(

(q2; q2)s
(q2; q2)t

)1/2

(q2; q2)−1
s−t · v

s+t
0 L0+b

s−t
+ · pt(b∗+b+; q2(s−t), 0 | q2),

while for t ≥ s,

Gt,s = qs(s−t)
(

(q2; q2)t
(q2; q2)s

)1/2

(q2; q2)−1
t−s · v

t+s
0 L0+(−qb∗+)t−s · ps(b∗+b+; q2(t−s), 0 | q2).
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We remark that it is not so surprising to see the Wall polynomials appear here. Indeed, the projective
X-representation G can be seen as ‘the square root’ of the coaction α, which is in its form very similar
to the ∗-representation (θ⊗θ)∆ of C(SUq(2)) (using the notation from the proof of Proposition 3.11).
It is known that the Clebsch-Gordan coefficients of this representation are expressible precisely in
terms of Wall polynomials (see [28], Remark 4.2). For us however, these polynomials arise as the
Clebsch-Gordan coefficients 〈Gr,se+

n , e
0+
m 〉 of the ∗-representation α of C(S2

q0). But both results essen-
tially hinge on information concerning the spectral decomposition of the operator ∆+(b∗+b+).

4 A Morita equivalence between the duals of SUq(2) and

Ẽq(2)

In this section, we identify H with Ẽq(2).

Definition 4.1. We define n0 ηL (H) = L∞(H) as the closure of

C[Z]� C[N]→H0+ : e0+
n ⊗ e0+

k → qn e0+
n ⊗ e0+

k+1.

Then n0 is an unbounded normal operator.

Proposition 4.2. The following formula holds:

∆L ∞(H)(v0) = v0 ⊗ v0.

Proof. This is immediate from Theorem 3.13 and Proposition 1.8.

Proposition 4.3. The following formula holds:

∆L ∞(H)(n0) = n0 ⊗ v0+̇v∗0 ⊗ n0,

with the latter being the closure of the sum of the two operators involved.

Remark: The computation which follows will be very similar to an argument appearing in [48]. We
will also use the known properties of n0 ⊗ v0+̇v∗0 ⊗ n0, for example its normality ([47]).

Proof. In the proof, we drop the sign index of basis vectors to lighten notation.

We first remark that it is sufficient to prove that

(n0 ⊗ v0+̇v∗0 ⊗ n0)∆0+(L0+) = ∆0+(L0+)∆+(b+).

Indeed, if this holds, then by the trivial commutation relation n0L0+ = L0+b+, we get

(n0 ⊗ v0+̇v∗0 ⊗ n0)∆0+(L0+) = ∆0(n0)∆0+(L0+).

Hence, using v0n0v
∗
0 = qn0 and the previous proposition, we obtain

∆0(n0χn) = (n0 ⊗ v0+̇v∗0 ⊗ n0)∆0(χn) for all n ∈ Z,

where χn =
∑∞

k=n(ekk ⊗ 1).

But |n0|χn → |n0| in the strong resolvent topology. Hence

∆0(n0) ⊆ n0 ⊗ v0+̇v∗0 ⊗ n0,
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and since both operators are normal, equality follows.

We now prove the commutation relation

(n0 ⊗ v0+̇v∗0 ⊗ n0)∆0+(L0+) = ∆0+(L0+)∆+(b+).

Since v0n0v
∗
0 = qn0, we have, for p ∈ N,

(n0 ⊗ v0)
∑p

t=0(q2; q2)−1
t vt0L0+b

t
+ ⊗ vt0L0+(−qb∗+)t

=
∑p

t=0(−1)t(q2; q2)−1
t vt0L0+b

t+1
+ ⊗ vt+1

0 L0+(b∗+)t.

In the same way, one computes that

(v∗0 ⊗ n0)
∑p

t=0(q2; q2)−1
t vt0L0+b

t
+ ⊗ vt0L0+(−qb∗+)t

=
∑p

t=0(−1)t(q2; q2)−1
t vt−1

0 L0+b
t
+ ⊗ vt0L0+(b∗+)tb+.

Since the graph of n0 ⊗ v0+̇v∗0 ⊗ n0 is closed in the weak topology, it is then sufficient to show that∑p
t=0(−1)t(q2; q2)−1

t vt0L0+b
t+1
+ ⊗ vt+1

0 L0+(b∗+)t

+
∑p

t=0(q2; q2)−1
t (−1)tvt−1

0 L0+b
t
+ ⊗ vt0L0+(b∗+)tb+

converges to ∆0+(L0+)∆(b+) in the weak operator topology.

Write x = q−1b+(e00 ⊗ 1). Then x is a bounded operator, and on (l2(N)⊗ l2(Z))⊗ (l2(N0)⊗ l2(Z)),
we have the above sum equals∑p

t=0(−q)t(q2; q2)−1
t vt0L0+b

t+1
+ ⊗ vt+1

0 L0+(x∗)t

+
∑p

t=0(−1)t(q2; q2)−1
t qt+1vt−1

0 L0+b
t
+ ⊗ vt0L0+(x∗)tx

,

which clearly converges in norm. Similarly, on (l2(N0) ⊗ l2(Z)) ⊗ (l2(N) ⊗ l2(Z)), we have that the
sum equals ∑p

t=0(−1)t(q2; q2)−1
t qt+1vt0L0+x

t+1 ⊗ vt+1
0 L0+(b∗+)t

+
∑p

t=0(−1)t(q2; q2)−1
t qtvt−1

0 L0+x
t ⊗ vt0L0+(b∗+)tb+,

which again converges in norm. Hence, we only have to check the convergence (and the operator
identity claim) on vectors of the form (ek ⊗ ξ)⊗ (el ⊗ η).

Now if k = l = 0, one computes that the evaluation of the above sum on such a vector gives (q2; q2)∞
times the vector

e1 ⊗ ξ ⊗ e0 ⊗ S−1η

+
∑p−1

t=0 (−1)t ((q2; q2)−1
t − (q2; q2)−1

t+1) (e−t ⊗ St+1ξ ⊗ e−(t+1) ⊗ S−tη)

+ (−1)p e−p ⊗ Sp+1ξ ⊗ e−(p+1) ⊗ S−pη.

On the other hand, evaluating

(

p∑
t=0

(q2; q2)−1
t vt0L0+b

t
+ ⊗ vt0L0+(−qb∗+)t) ·∆+(b+)
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on such a vector, we get (q2; q2)∞ times the sum of

e1 ⊗ ξ ⊗ e0 ⊗ S−1η

+
∑p−1

t=0 (−1)t+1(q2; q2)−1
t+1 q

2(t+1) (e−t ⊗ St+1ξ ⊗ e−(t+1) ⊗ S−tη)

.

The difference between the two evaluated vectors is

(q2; q2)∞ (−1)pe−p ⊗ Sp+1ξ ⊗ e−(p+1) ⊗ S−pη.

This indeed converges weakly to zero.

The case kl 6= 0 is less subtle, since we have norm-convergence: we can then simply express both sides
with respect to basis vectors, and compute that the resulting coefficients equal. We omit the details.

Theorem 4.4. The locally compact quantum groups H and Ẽq(2) are isomorphic.

Proof. This is immediate by the previous two propositions and the fact that L (H) is generated by
v0 and (the spectral projections of) n0. (For the definition of Ẽq(2), see [46], and [22] for a treatment
in the setting of locally compact quantum groups.)

Remarks:

1. In fact, one can then also see this as a construction of Ẽq(2) as a locally compact quantum
group, albeit in a rather indirect way. This provides then a new, non-constructive proof of the
existence of Haar weights on L∞(Ẽq(2)) (which was already proven in two quite different ways
in [2] and [34]).

2. The action of SUq(2) on the standard Podleś sphere of course restricts to SOq(3), and then the
above restriction will give a Morita equivalence between the duals of SOq(3) and Eq(2). While it
is valid to say that this is the more natural setting, we prefer to work with the 2-folded coverings
since the computations are somewhat easier.

We can now easily prove the statement we made in the abstract.

Theorem 4.5. There exists a unitary 2-cocycle Ω ∈ L∞(SUq(2))⊗̄L∞(SUq(2)) such that

(L∞(SUq(2)),∆Ω) ∼= L∞(Ẽq(2)).

Proof. Let x̃ be a unitary l2(N)→ l2(Z), and put

x = x̃⊗ 1 : H+ →H0+.

Then x ∈ L (X), and we put
Ω := (x∗ ⊗ x∗)∆0+(x).

It is then straightforward to check that Ω is a unitary 2-cocycle. The map

L∞(Ẽq(2))→ L∞(SUq(2)) : y → x∗yx

provides the isomorphism stated in the theorem.

Remarks:
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1. This shows that the regularity of the standard left multiplicative unitary of a von Neumann
algebraic quantum group ([3]) is not preserved by cocycle twisting, since it is well-known that
Ẽq(2) is not regular. It is an interesting question to see if there are necessary and sufficient
conditions for regularity to be preserved.

2. In [48], Woronowicz proves that, with u : H+ → H0+ the canonical isometry as before, the
formula ∆0(uxu∗) = Z∗∆+(x)Z holds for some isometry Z ∈ L (X)⊗̄L (X), which (in his
approach) is easily seen to satisfy the 2-cocycle relation. In fact, it is also easily seen that, in
our notation, Z = ∆+0(u∗). It is not clear to us if Woronowicz’s methods could be refined as
to provide, in a straightforward fashion, a unitary 2-cocycle as in the previous theorem, but we
should admit that we have not considered this possibility in detail.
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to Syddansk Universitet, Odense, Denmark, where part of this work was done. I would also like to
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[5] G. Böhm, F. Nill and K. Szlachányi, Weak Hopf algebras. I. Integral theory and C∗-structure, J.
Algebra 221 (2) (1999), 385–438.

[6] E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, Three-dimensional quantum groups from
contractions of SU(2)q, J. Math. Phys. 31 (1990), 2548-2551.

[7] E. Celeghini, R. Giachetti, E. Sorace and M. Tarlini, Contractions of quantum groups, Proceedings
of the semester ’Quantum Groups’, Euler Math. Institute Leningrad, Oct. Nov. 1990.

[8] K. De Commer, Galois objects and the twisting of locally compact quantum groups, to appear in
the Journal of Operator theory, preprint available at arXiv:math.OA/0804.2405v3.

[9] K. De Commer, On the cocycle twisting of compact quantum groups, Journal of Functional
Analysis 258 (2010), 3362-3375.

[10] K. De Commer, Galois coactions for algebraic and locally compact quantum groups, Ph.D. thesis
K.U. Leuven (2009), Available at http://hdl.handle.net/1979/2662.

[11] K. De Commer, On the construction of quantum homogeneous spaces from ∗-Galois objects,
arXiv:math.QA/1001.2153v1.

[12] K. De Commer, Comonoidal W∗-Morita equivalence for von Neumann bialgebras,
arXiv:math.OA/1004.0824v1.

[13] M. Enock, Measured quantum groupoids in action, Mémoires de la SMF 114 (2008), 1–150.
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