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Abstract

An ergodic action of a compact quantum group G on an operator algebra A can be
interpreted as a quantum homogeneous space for G. Such an action gives rise to the
category of finite equivariant Hilbert modules over A, which has a module structure over
the tensor category Rep(G) of finite-dimensional representations of G. We show that
there is a one-to-one correspondence between the quantum G-homogeneous spaces up to
equivariant Morita equivalence, and indecomposable module C*-categories over Rep(G)
up to natural equivalence. This gives a global approach to the duality theory for ergodic
actions as developed by C. Pinzari and J. Roberts.
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Introduction

In the study of compact group actions on topological spaces, homogeneous spaces play a key
role as fundamental building blocks. Ever since the foundational works of 1. Gelfand and
M. Neumark, the notion of unital C*-algebras is known to be a rich generalization of compact
topological spaces, and one frequently interprets them as function algebras on (compact) ‘quan-
tum spaces’. In this more general noncommutative framework, a generally accepted notion of
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‘compact quantum homogeneous space’ for a compact group is that of a continuous ergodic
action of the group on a unital C*-algebra, that is, an action for which the scalars are the only
invariant elements.

In the same way as compact topological spaces are generalized to unital C*-algebras, S.L. Woro-
nowicz [37, 39] generalized the notion of compact topological groups to that of compact quantum
groups. His axiom system for compact quantum groups is a very simple and natural one involv-
ing the coproduct homomorphism dualizing the product map of groups. The resulting theory
turns out to be strikingly rich, but at the same time as structured as the classical one. As in
the classical case, we have the Haar measure, the Peter-Weyl theory and the Tannaka—Krein
duality ([39, 38, 18]).

One may also formulate the notion of actions of compact quantum groups on quantum spaces,
in a way which respects the Gelfand—Neumark duality when applied to the continuous map
G x X — X defining a classical group action. In this framework there is also a natural
candidate for the ‘quantum homogeneous spaces’ over compact quantum groups, by using the
formalism of ergodic (co)actions [29, 7]. In this paper, we aim to characterize such quantum
homogeneous spaces in the spirit of the Tannaka—Krein duality.

Such a duality theory for ergodic actions was already developed in [28], where the notion of
quasi-tensor functor, a special kind of isometrically lax functor, was used. For practical purposes
however, the lack of a strong tensor structure on such a functor makes it difficult to let algebra
run its course in computations, due to the appearance of extraneous projections as stumbling
blocks. Taking a cue from the theory of fusion categories, we rather formulate a duality theory in
terms of module C*-categories over the tensor C*-category of finite-dimensional representations
of G. Indeed, module categories over fusion categories are known to correspond to a good
generalized notion of subgroup/homogeneous space (see A. Ocneanu’s pioneering work in the
subfactor context [25], and more recent developments in the purely algebraic framework [1, 26,
12]).

Module C*-categories can equivalently, and more concretely, be described in terms of tensor
functors into a category of bi-graded Hilbert spaces. This formulation then makes at the same
time the connection with the ‘fiber functor theory’” from [6], which corresponds to non-graded
Hilbert spaces and ergodic actions of full quantum multiplicity, and with the theory of [28],
which corresponds to considering one particular component of such a graded tensor functor.
In the purely algebraic setting, such bi-graded tensor functors also lead to the construction of
weak Hopf algebras, i.e. quantum groupoids [15, 16, 11], and Hopf-Galois actions [32, 33, 30].
The relation with ergodic actions comes by means of a crossed product construction and a
Morita theory for quantum groupoids, but we will not further go in to this in this paper. We
also mention that a different kind of Tannaka-Krein duality for classical homogeneous spaces
was developed in [17], and for actions on finite quantum spaces in [5, 4] within the framework
of planar algebras.

Here is a short summary of the contents of the paper. The first two sections will cover prelim-
inaries and fix notations. They are meant as an aid for readers who are not familiar with the



methodology. In the first section, we will recall the basic concepts concerning compact quantum
groups and quantum homogeneous spaces. In the second section, we introduce the necessary
prerequisites concerning C*-categories, tensor C*-categories and module C*-categories. Then,
in the next five sections, we prove our main results. In the third section, we explain how quan-
tum homogeneous spaces lead to indecomposable module C*-categories. In the fourth section,
we briefly expand on the algebraic content of a general compact quantum group action, so that
in the fifth section, we can concentrate on the essential part of the reconstruction of a quantum
homogeneous space from an indecomposable module C*-category. In the short sizth section we
show that this establishes essentially an equivalence between the two notions. In the seventh
section, we give further comments on the functoriality of this correspondence. In the appendiz,
we explain the link between module C*-categories and bi-graded tensor functors. It is mainly
meant to provide details for, as well as to generalize, the remark which appears in the proof of
Theorem 2.5 of [11].

In the accompanying paper [8], we apply the results of the present paper to the case of the
compact quantum group SU,(2).

Conventions To have consistency when working with Hilbert C*-modules, we will always
take the inner product (£, n) of a Hilbert space to be linear in 1 and antilinear in £&. When &
and 7 are vectors in a Hilbert space J#, we write we ,, for the functional 7" +— (&, Tn) on B(J€).
When A and B are C*-algebras, A ® B denotes their minimal tensor product unless otherwise
stated.

1 Compact quantum groups and related structures

1.1 Compact quantum groups

Definition 1.1 ([39]). A compact quantum group G consists of a unital C*-algebra C(G) and
a faithful unital *-homomorphism A: C(G) — C(G) ® C(G) satisfying the coassociativity
condition (A ®id) o A = (id®A) o A and the cancelation condition

[AC(G))1®C(G)]™ = C(G) ® C(G) = [A(C(G))(C(G) ® ]™,

where n-cl means taking the norm-closed linear span.

We recall from [39] that any compact quantum group admits a unique positive state g which
satisfies

(id®pg)(A(z)) = ¢e(r)l = (pe ®1d)(A(z)),  zeC(G). (1.1)
This state is called the invariant state (or the Haar state) of C(G).

Definition 1.2. The compact quantum group G is called reduced if the invariant state ¢g is
faithful.



In the rest of the paper, we will always work with reduced compact quantum groups. This is
no serious restriction, as to any G one can associate a reduced companion which has precisely
the same representation theory as G.

Definition 1.3. A wunitary corepresentation u of C'(G) on a Hilbert space /7, is given by a
unitary element u of B(J,) ® C(G) satisfying the multiplicativity condition

(Id®A)(u) = upuiz € B(H,) ® C(G) ® C(G),

where the leg numbering indicates at which slot in a multiple tensor product one places the
element, filling the blank spots with units. A unitary corepresentation u is said to be finite-
dimensional when .77, is so.

When v and v are unitary corepresentations of C(G), an operator T € B(J,, 7¢,) is said to be
an intertwiner between u and v if it satisfies v(T'® 1) = (T'® 1)u. A unitary corepresentation
u is called #rreducible if the space of intertwiners from u to itself is one-dimensional.

In what follows we will refer to unitary corepresentations of C'(G) as unitary representations of

G.

1.2 Quantum homogeneous spaces

Definition 1.4 ([7, 29]). Let G be a compact quantum group. An action of G on a unital
C*-algebra A is a faithful unital *-homomorphism

a:A—- AR C(G)
satisfying the coaction condition (id ®A) o o = (¢ ®id) o v and the density condition

[(1®C(G))a(A)]*™ = AR C(G).

We call the action ergodic if the space
A ={zeA|alx) =21}

is equal to C1. If (A, «) is an ergodic action, we will use the notation A = C'(X), and refer to
the symbol X as the quantum homogeneous space.

If X is a quantum homogeneous space for G, then C(X) carries a canonical faithful positive
state px, determined by the identity

(id®@pe)(a(r)) = px(x)l  (z e C(X)).

It is the unique state on C'(X) which is a-invariant, (¢x ® id)a(z) = ¢x(x)1 for all z € C(X).



2 (C'-categories

2.1 Semi-simple C*-categories

Definition 2.1 ([13]). A C*-category D is a C-linear category whose morphism spaces are
Banach spaces satisfying the submultiplicativity condition ||ST'| < ||S||T| for composition of
morphisms S and 7', and admitting antilinear ‘involutions’

*: Mor(X,Y) - Mor(Y, X), Tw—T%,

which behave contravariantly and satisfy the C*-condition ||[T*T| = ||T||* for each morphism 7.
A linear functor between two C*-categories is called a C*-functor if it preserves the *-operation.

Remark 2.2. Let D and D’ be C*-categories. Let Fun(D, D’) be the category
e whose objects are the C*-functors from D to D', and

e whose morphisms between two functors F,G: D — D’ consist of the natural transforma-
tions ¢o = (¢x: F'X — GX)xep such that (|¢x|)xep is uniformly bounded.

Then Fun(D,D’) is a C*-category with the norm ||¢.|| = supyep |¢x| and the involution
(0)x = (ox)*.

Definition 2.3 ([13]). We say that an object X in a C*-category D is simple if Mor(X, X) is
isomorphic to C. We call D semi-simple [23, Section 1.6] if D admits finite direct sums and if
any of its objects is isomorphic to a finite direct sum of simple objects.

Remark 2.4. A C*-category D is semi-simple if and only if all morphism spaces are finite-
dimensional and ‘idempotents split’. The latter condition means that any self-adjoint projection
p € Mor(X, X) is of the form vv* for some isometry v € Mor(Y, X). Furthermore, a semi-simple
C*-category also has a zero object 0, i.e. an object which is both initial and terminal.

Definition 2.5. Let J be a set, and D a semi-simple C*-category. We say that D is based on J
if we are given a bijection between .J and a maximal family of mutually non-isomorphic simple
objects in D. We then write X, for the simple object associated with r € J.

By definition, any object X in a semi-simple C*-category D based on .J is isomorphic to a
direct sum @®,c;m,X,. The integer m, is called the multiplicity of X, in X, and is uniquely
determined by m, = dim(Mor(X,, X)). Then for any object X and any irreducible X,, the
complex vector space Mor(X,, X) admits a natural structure of Hilbert space by the inner
product (S,T) = S*T € Mor(X,, X,) = C.

Examples of semi-simple C*-categories will be presented in Section 3 and the appendix. They
can be seen as categorified versions of Hilbert spaces, cf. the slightly different context of [3].
As with Hilbert spaces, there is essentially only one semi-simple C*-category for each cardinal
number, the cardinality of the set of isomorphism classes of irreducible objects in the given
semi-simple C*-category, cf. Lemma A.1.6. However, true to this analogy, they arise in various



presentations in practical situations, from concrete to abstract. For the moment, it will suffice
to have the following characterization of equivalences between semi-simple C*-categories.

Lemma 2.6. Let D and D’ be semi-simple C*-categories, with D based on an index set J. Let
F be a C*-functor from D to D'. Then F is an equivalence of categories if and only if the set
{F(X,) | reJ} forms a mazimal set of mutually non-isomorphic irreducible objects in D'.

Proof. The necessity of the condition is obvious. Let us see that it is also sufficient. Let
X be an irreducible object of D and let m be a nonnegative integer. Then the C*-algebra
End(mX) is isomorphic to M,,(C), where the identity morphisms of the direct summands
form a partition of unity by mutually equivalent minimal projections. Since F(X) is also an
irreducible object, it follows that F' induces a C*-algebra isomorphism between End(mX) and
End(F(mX)) = End(mF(X)). More generally, given a finite direct sum X = @®,c;m,X,, we
can conclude that F' provides an isomorphism between End(X) and End(F(X)). Finally, by
considering this argument for X @Y, we conclude that F' gives a bijection from Mor(X,Y") to
Mor(F(X), F(Y)) for any objects X, Y, that is, F' is a fully faithful functor.

As the set {F/(X,) | r € J} forms a maximal set of mutually non-isomorphic irreducible objects
in D', we also have that F' is essentially surjective. From [21, Theorem IV.4.1], we conclude
that F'is an equivalence. O

2.2 Tensor C*-categories

Definition 2.7. [10] A (strict) tensor C*-category C = (C,®, 1) consists of a C*-category C
together with a bilinear C*-functor ®: C x C — C and an object 1 € C such that there are
equalities of functors

—®(-®-)=(-®-)®-, 1®—=ide = -®1L.

The ‘strictness’ condition refers to the on the nose associativity of ®. In most examples which
arise in practice, the associativity only holds up to certain coherence isomorphisms [21, Chapter
VII]. But for the cases we will encounter, the coherence isomorphisms will be obvious and one
can safely ignore them. Also for abstract tensor categories, one can almost always restrict
oneself to the setting of strict tensor categories by Mac Lane’s coherence theorem [21, Section
VIL.2]. This coherence result holds as well on the C*-level.

Definition 2.8 ([10, 20]). Let C be a tensor C*-category. An object U in C is said to admit
a conjugate or dual if there exists a triple (U, Ry, Ry) with U € C and (Ry, Ry) a couple of
morphisms

RUZ]l—>U®U, RU21—>U®U
satisfying the conjugate equations

(Rf ®idy)(idy ®Ry) = idy, (R ®idy)(idg ®Ry) = idg . (2.1)



The full subcategory of all objects in C admitting duals is denoted by C;. A tensor C*-category
C is called rigid if C = C;.

Remarks 2.9. 1. [20, Theorem 2.4] When U and V are in Ct, the product V ® U of their
duals is in duality with U ® V. Moreover, if (U, Ry, Ry) makes a dual for U, then
(U, Ry, Ry) makes a dual for U. It follows that C; is a rigid C*-tensor subcategory of C.

2. For any U, the object U, when it exists, is unique up to isomorphism. If (Ry, Ry)
satisfy the conjugate equations, then for any A € C* also (AR, \™'Ry) satisfy the same
equations. When the unit of C is irreducible, then for U irreducible and U a fixed dual,
this is the only arbitrariness in the choice of (R, Ry).

3. When the unit of C is irreducible, then for any irreducible U with dual U, one can
always arrange for a solution (R, Ry) of the conjugate equations which is normalized,
i.e. such that Rj;Ry = Rj;Ry. Then by the above scaling result, dim,(U) = R} Ry is a
strictly positive real number which is uniquely determined by U. It is called the quantum
dimension of U.

Examples 2.10. 1. The category of all Hilbert spaces and bounded maps is a tensor C*-
category for the ordinary tensor product of Hilbert spaces. The maximal rigid subcategory
consists of all finite-dimensional Hilbert spaces. If 77 is a finite-dimensional Hilbert space,
the complex conjugate space ./ can be taken as its conjugate object, where the maps
R, and R, are given by

Ryy: ARA —C, {@n—L&n), Ry AQH —>C, £@7—1,8).

2. For any compact quantum group G, the category Rep(G) of its finite-dimensional unitary
representations together with the intertwiners forms a rigid tensor C*-category with irre-
ducible unit object. The tensor product u @ v of two representations u and v is defined to
be the representation on J, ® 7, given by the unitary ui3ve3 € B(9;,) ® B(7,) @ C(G).
When u is an object of Rep(G), its dual can be given by a unitarization of (j ®id)(u™"') €

B(,) ® C(G), where j: B(J,) — B(,) is the natural anti-isomorphism character-

ized by j(T)¢ = T*¢. Unlike the case of Hilbert spaces or compact groups, u®wv is not
isomorphic to v @ u in general.

3. [10, 36] For a fixed C*-category D, let End(D) denote the category of C*-endofunctors, cf.
Remark 2.2. Then End(D) is a tensor C*-category, with the ®-structure F® G = F o G
given by the composition of endofunctors, and with the identity functor providing the
unit. The associated rigid category End(D); consists of adjointable functors whose unit
and co-unit maps are uniformly bounded.

We recall the notion of strong tensor functor and tensor equivalence.

Definition 2.11. Let C; and C; be two tensor C*-categories. A strong tensor C*-functor from
C: to Cy consists of a C*-functor F': C; — Co together with natural unitary transformations

¢U7vF(U)®F(V)—>F(U®V), C: ]lcz—>F(]lcl),



satisfying certain coherence conditions [24, Section 1.2].
It is called a tensor equivalence if the underlying functor F' is an equivalence.

Example 2.12. If G is a compact quantum group, there is a natural forgetful functor from
Rep(G) to Hy, sending each unitary representation u to the underlying Hilbert space /7, and
acting as the identity on intertwiners. The natural transformations ¢) and ¢ are identity maps.
In general, there can exist other faithful strong tensor C*-functors from Rep(G) to H; besides
this canonical one, cf. [6], but each one of them determines a unique compact quantum group

([38])-

The following lemma will be used at some point.
Lemma 2.13 ([20]). Let C; and Cy be tensor C*-categories, and F: C; — Cy a strong tensor
C*-functor. If Cy is rigid, then the image of F' is contained in (Ca)y.

Proof. If U € Cy, then the compatibility of F' with the tensor products can be used to construct

a duality between F'(U) and F'(U). Hence the image of F'is inside (Cy)s. O

2.3 Module C*-categories

Definition 2.14. Let C be a tensor C*-category with unit object 1, and D a C*-category. One
says that D = (D, M, ¢, e) is a C-module C*-category if M: C x D — D is a bilinear *-functor
with natural unitary transformations

QS:M((_®_)>_):)M(_>M(_>_))> 62M(]1,—):>id,
satisfying certain obvious coherence conditions, cf. [27], which we will spell out below.

We say that D is semi-simple if the underlying C*-category is semi-simple.

We say that D is indecomposable or connected if, for all non-zero X,Y € D, there exists an
object U € C such that Mor(M(U,Y), X) # 0.

In the following, we will use the more relaxed notation U ® X for M (U, X), and similarly
for morphisms. The coherence conditions can then be written in the following form, as the
commutation of the diagrams

U, VRW,X
—_—

UQVeW)®X Ue(VeWw)® X) (2.2)
PURV,W, X l lidU Rdv,w,x

UV) (WX U® (Ve (WeX)),

) PUV,WRX



and

>~

®(1®

U
e

U®X

) (2.3)

W\(

id

ox U®X.
b1,U,X %7

1®(U®X)

Examples 2.15. 1. Let D be a C*-category. Then D is a module C*-category for End(D)
in an obvious way.

2. Let G be a compact (quantum) group and H be a closed (quantum) subgroup of G. Then
Rep(H) is a Rep(G)-module C*-category in a natural way: the action of 7 € Rep(G) on
6 € Rep(H) is defined as mu® 6. In other words, this is induced by the restriction functor
Rep(G) — Rep(H), which is a strong tensor C*-functor.

3. More generally, if C; and Cy are tensor C*-categories, and F' a strong tensor C*-functor
from C; to Cy, then Cy becomes a C;-module C*-category by the association M (X,Y) =
FX)®Y.

We will need the following interplay between dual objects and the module structure.

Lemma 2.16. Let C be a rigid tensor C*-category, and let D be a C-module C*-category. For
any U in C and any objects X, Y in D, we have an isomorphism Mor(U®Y, X) =~ Mor(Y, URX),
called the Frobenius isomorphism associated with (Ry, Ry).

Proof. This can be proved by a standard argument involving the conjugate equations, cf. Propo-
sition A.4.2. O

The appropriate notion of morphisms between module C*-categories is the following.

Definition 2.17. Let D and D’ be module C*-categories over a fixed tensor C*-category C. A
C-module homomorphism from D to D’ is given by a pair (G,1)), where G is a functor from D
to D’ and v is a unitary natural equivalence G(— ® —) — — ® G—, such that the diagrams of

the form

C1eX) 2N 106X (2.4)

G<e>l /

GX



and

(2.5)
URGV®X)
GU®(VR®X)) U®(V®GX)
G(¢U,v,x)l ldm,v,cx
GUSV)®X) — UV)®GX

commute.

An equivalence between D and D’ is a morphism (G,1) for which G is an equivalence of
categories.

The following section is dedicated to the Rep(G)-module C*-categories which are the star actors
of this paper.

3 Equivariant Hilbert modules

Definition 3.1 ([2]). Let X be a quantum homogeneous space for a compact quantum group
G. An equivariant Hilbert C*-module £ over X is a right Hilbert C'(X)-module &, carrying a
coaction ag: & — £ ® C(G), where the right hand side is the exterior product of £ with the
standard right Hilbert C'(G)-module C'(G), satisfying the density condition

[(1®C(G))ag(E)]" = E®C(G) = [as(€)(1® C(G))]™
and the compatibility conditions
L. Vo e C(X), V¢ e &: asg(§ - a) = asg(§ax(z),
2. ¥§,ne &:{ag(§), as(n)omece) = ax({€,ne)-

Remark 3.2. An equivariant Hilbert C*-module is necessarily saturated, and in particular
faithful as a right C'(X)-module. Indeed, otherwise the closed linear span of {(§, n)cx) | §,n € £}
would give a proper equivariant closed 2-sided ideal Z in C'(X). But any invariant state on
C(X)/Z would induce a non-faithful invariant state over C'(X), which is a contradiction.

To any equivariant Hilbert C'(X)-module one can associate a special unitary which implements
the coaction.

Definition 3.3. Let X be a quantum homogeneous space for a compact quantum group G,
and & an equivariant Hilbert C*-module over X. One defines the associated unitary morphism

Xe € Loxzee) (€ @y (C(X)®C(G)),E@C(G))

10



by the formula X¢(§® (z® h)) = ag(&)(x ® h).

Example 3.4. Consider a set e with one element, and consider C'(e) = C with the trivial right
action

Qriv: C(0) > C(0)QC(G), 1->1®1.

Then an equivariant Hilbert C*-module over e is nothing but a representation of G. Indeed,
a right Hilbert C'(e)-module is just a Hilbert space . Then the receptacle of the unitary
operator in Definition 3.3 can be identified with B(#) ® C'(G). This gives the correspondence
of the equivariant Hilbert C*-modules over e and the unitary representations of G. We will
denote the equivariant Hilbert space associated to u as (4%, ).

We will be particularly interested in a subcategory of equivariant Hilbert C*-modules which
admit a nice decomposition into irreducible objects.

Definition 3.5. An equivariant Hilbert C*-module £ is called
e finite if it is finitely generated projective as a right C'(X)-module, and
e irreducible if the space
Le(&)={TeL(E)|ac(TE) =(T®1)ag(&) for all £ € £}
is one-dimensional.

Any irreducible equivariant Hilbert C*-module is finite in the above sense, as seen in the next
proposition.

Proposition 3.6. An equivariant C*-module is finite if and only if the C*-algebra L (&) is
finite-dimensional.

Proof. Let X¢ be the unitary morphism associated with g as in Definition 3.3. Then, the
map = — Xg(r ®q, 1)X¢ defines a coaction of C(G) on L(€), and the ideal of compact
endomorphisms is a G-invariant subalgebra [2]. Moreover, Lg(€) is precisely the G-fixed point
subalgebra of L(E).

First, let us prove that an equivariant module over X is finitely generated projective over C'(X)
when L (&) is finite-dimensional. We can reduce it to the case of Lg(£) = C by taking a
decomposition associated with a partition of unity by minimal projections in Lg(E). Then,
taking any non-zero positive compact endomorphism x of £, we see that (id ®pg)(Xa (T Qa,
1)X?) is simultaneously compact and nonzero positive scalar in £(€). Hence £ is finitely
generated projective over C'(X) [19, Lemma 6.5].

Conversely, suppose that we are given a finitely generated projective C'(X)-module £ admitting
a compatible corepresentation of C'(G). Then, the crossed product module £ x G, which is
finitely generated projective over C'(X) x G, admits a natural faithful representation of Lg(E)
as C(X) x G-module homomorphisms.

By the ergodicity of G on X, we know that C'(X) x G is a direct sum of algebras of compact
operators [7]. Hence, for any finitely generated projective module over C'(X) x G, the module

11



endomorphisms must form a finite-dimensional algebra. This implies that Lg(€) is finite-
dimensional. 0

In particular, any irreducible equivariant Hilbert C*-module £ over C'(X) gives another quantum
homogeneous space L(E) = IC(E), by the action as given in the beginning of the above proof.

Definition 3.7. A quantum homogeneous space Y is called equivariantly Morita equivalent to
X if there exists an irreducible equivariant Hilbert C*-module £ over C'(X) and an equivariant
C*-algebra isomorphism C(Y) — K(&). We say that such an equivariant Hilbert module £ and
associated isomorphism implement the Morita equivalence.

Note that the above terminology is justified by Remark 3.2.

Notation 3.8. Let G be a compact quantum group, and X a quantum homogeneous space
over G. We let Dx denote the category of finite equivariant Hilbert C*-modules over X, whose
morphisms are the equivariant adjointable maps between Hilbert C*-modules.

Proposition 3.9. The category Dx is a semi-simple C*-category.

Proof. By the above proposition, for any object £ in Dy, the algebra Mor(&, ) is a finite-
dimensional C*-algebra. Moreover, if p € Mor(&, £) is a projection, then p€ is again an object
of Dx. Remark 2.4 then implies the assertion. O

In view of Example 3.4, it can be seen that finite (resp. irreducible) equivariant Hilbert C*-
modules play a similar role as the finite-dimensional (resp. irreducible) representations of G.

Now let £ be a finite equivariant Hilbert C'(X)-module, and let u be a finite-dimensional unitary
representation of G. Then we can amplify £ with u to obtain the equivariant Hilbert module
u®E&. As a Hilbert C'(X)-module, u® € is the amplification .77, ® € of £ with the Hilbert space
.. The coaction of C'(G) is given by the formula

(u@ag)(E®@n) = wz(§ ® a(n)),

Then obviously u® € is still finite. We record the following facts for later reference.

Lemma 3.10. For any £ € Dy, there exists a representation u of G for which there is an
isometric morphism of € into u® C(X).

Proof. This is a consequence of the equivariant stabilization, see Section 3.2 of [34]. O

Proposition 3.11. Let X be a quantum homogeneous space for a compact quantum group G.
Denote by Dx the C*-category of finite equivariant Hilbert C'(X)-modules. Then the operation

Rep(G) x Dx — Dx, (u,&) —u®E

defines a connected Rep(G)-module C*-category structure on Dx.

12



Proof. The maps necessary to complete the Rep(G)-module category structure are obvious,
coming from the ordinary associativity maps for the concrete tensor products of the underlying
Hilbert spaces and Hilbert C*-modules.

Let us prove that Dy is connected over Rep(G). Let £ and F be arbitrary objects in D. By
Lemmas 3.10 and 2.16, we can find a representation u such that C'(X) appears inside u®¢&.
Then, again by Lemma 3.10, we can a suitable representation v such that Mor(v® &, F) # 0.
Hence D is connected. O

Remark 3.12. The equivariant K-group K& (C(X)) is a free abelian group generated by the ir-
reducible classes of Dx. Note that for compact groups, the above picture was already presented,
modulo some of the terminology, in [35, section 9]. Its extension to the compact quantum group
setting was treated in [31].

We aim to show in the next sections that the module C*-category Dx, together with the
distinguished element corresponding to the standard Hilbert C*-module C'(X), remembers the
quantum homogeneous space X.

4 An algebraic approach to quantum group actions

In this section, we will provide a characterization of quantum homogeneous spaces and equiv-
ariant Hilbert modules with the analysis drained out of it. This intermediate step will make
the Tannaka—Krein machine of the next section run more smoothly.

The main argument provides an algebraic description of an arbitrary action of a compact
quantum group G. It is based on results which appear already in [7, 29].

We first recall the notion of Hopf *-algebra associated with a compact quantum group.

Definition 4.1. [39] Let G be a compact quantum group. If u is a finite-dimensional unitary
representation of G, the elements (id Quwe,)(u) € C(G) for &,n € I, are called the matriz

coefficients of u. The set of all such elements with the u ranging over the representations of G
form a dense Hopf *-subalgebra P(G) < C(G).

Definition 4.2. Let G be a compact quantum group. Let &7 be a unital *-algebra. An algebraic
action of G on 7 is defined to be a Hopf *-algebra coaction

ay: A — o QP(G),

the tensor product on the right being the algebraic one, such that 27 is a unital C*-algebra,
and such that the following positivity condition is satisfied:

The map x — Eg(z) = (id®yg)a(x) € &/C is completely positive on 7. (P)

To be clear, the complete positivity means that for any n € N and any element a € & ® M,,(C),
the element (Eg ® id)(a*a) is a positive element in the C*-algebra /¢ @ M, (C).
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Lemma 4.3. Let G be a compact quantum group with an action as on a unital C*-algebra A.
Let o/ denote the linear span of (id®yg)(aa(z)(1®g)) for x € A and g € P(G). Then < is a
dense unital *-subalgebra of A on which a4 restricts to an algebraic action.

Proof. See [29, Theorem 1.5], and [7, Lemma 11 and Proposition 14], whose proofs do not
depend on the ergodicity assumption made there. The complete positivity of Eg follows from
the way it is defined in (P); namely, *-homomorphisms, states, their amplifications, and their
compositions are completely positive. O

Proposition 4.4. Let G be a compact quantum group with an algebraic action o on a unital
*-algebra </ . Then there exists a unique C*-completion A of </ to which o extends as a
coaction of C(G). Moreover, A® = a/®.

Proof. We denote by B the C*-algebra 27©¢. By the complete positivity assumption on Eg, the
B-valued inner product {a,byp = Eg(a*b) on & gives a pre-Hilbert B-module structure. We
want to show that the left representation of &7 on itself by left multiplication extends to the
Hilbert module completion A.

Let a be an arbitrary element of <. Since the image of a,, ends up in the algebraic tensor
product of & and P(G), there is a finite-dimensional unitary representation u of G and an
intertwiner from @ to 7 whose image contains a.

Let us choose an orthonormal basis e; of 7%, and put u;; = (we,.; ® id)(u). Then, the above
statement means that there are elements a; € &/ such that

e a can be written as a linear combination ). A\;a;, and
e the elements a; transform according to (u};), so ay(a;) = >5; a; @ uj;.
The unitarity of u implies that > . aa; € B.

Since B is a C*-algebra, one has the inequality Y, afa; < |, afa;l|p. Fix now some j. Com-
bining the inequalities afa; < };; afa; in o/ with the previous one, the positivity of Eg implies
that

Eg b*a*aj HZa a;

E(Gb*) Vbe o .

It follows that left multiplication with each a; is bounded, so that a extends as a left multipli-
cation operator to A.

We obtain in this way a faithful *-representation o7 — Lp(A). Define A to be the norm-
completion of &7 in this representation. We claim that the coaction a,, extends to A. Consider
the transformation X on &/ ® P(G) defined by X (a® ¢g) = ay(a)(1® g). Then, the invariance
of g implies that X extends to a unitary morphism on the right Hilbert B-module A®.Z?(G).
By a routine computation we obtain that a — X(a ® 1)X* for a € A gives the extension a4 of
oy to A.

From this formula for a4, it also follows that we have (id ®pg)a(a) = {(a-15,1p)p for all a € A.
It follows that the invariant elements of A lie in B.
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It remains to prove the uniqueness of A. Let us assume that A is an arbitrary unital C*-algebra
satisfying the conclusion of the lemma. Then Eg can, by the same formula, be extended to
a conditional expectation from A to B. Since G is reduced, this conditional expectation is
faithful.

Now, if a € & < A and R < ||a/, the functional calculus shows that there is a positive element
b € A such that (Rb)* < ba*ab. Thus, the norm of a can be characterized by

Ja| = sup (!E«;(b*a*aw)%
= su —— .
bea\(0) \ || Ec(b*D)]

Hence the C*-norm on & is uniquely determined in terms of (&7, ay). O

Proposition 4.5. Let G be a compact quantum group. Then the correspondences A — o
and o/ — A of Lemma 4.3 and Proposition 4.4 can be extended to respective functors Alg and
Comp between the categories of actions of G and algebraic actions of G. Moreover, Comp o Alg
is naturally equivalent to the identity functor.

Here, the morphisms on the respective categories are understood to be the equivariant unital
*~homomorphisms.

Proof. Let A and B be unital C*-algebras endowed with G-actions, and let f: A — B be an
equivariant unital *~homomorphism. The equivariance implies that f restricts to an equivariant
*-homomorphism o/ — Z. This gives the functor Alg.

Conversely, suppose that & and % are unital *-algebras with algebraic G-actions, A and B
their respective completions. Then the direct sum A@ B admits a canonical G-action extending
the ones on the direct summands. If f: .o/ — 2 is an equivariant unital *-homomorphism,
the map (id x f)(a) = a ® f(a) is a faithful G-equivariant homomorphism from < to A @ B.
Proposition 4.4 implies that the C*-norm on .7 induced by id x f has to agree with the A-norm.
Hence f extends to an equivariant *~-homomorphism A — B. This way we obtain the functor
Comp.

Now, the natural equivalence between Comp o Alg and the identity functor follows directly from
density part in Lemma 4.3 and the uniqueness part in Proposition 4.4. O

Remark 4.6. The composition Algo Comp is not equivalent to the identity functor in gen-
eral. For example, if A is given by the function algebra of closed disk C'(D) endowed with the
rotation action of U(1), the algebra A contains many U(1)-invariant norm dense subalgebras
corresponding to the various decaying conditions around the origin. However, on the subcate-
gory of the actions with finite-dimensional fixed point algebras, Alg o Comp is indeed equivalent
to the identity functor.
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5 Tannaka—Krein construction

Let G be a compact quantum group. We take a set I indexing the equivalence classes of
irreducible objects in Rep(G), and a distinguished irreducible object u, for each a € I. When
convenient, we will abbreviate u, by a. The index corresponding to the unit object of Rep(G)
will be written as 0. We identify 7, with C (canonically) by means of the tensor structure.

It will be handy to use the following Penrose—Einstein-like notation. It concerns the natural
map

@Mor(ua, u) ® H, — A, Zﬂfz ®E — foz(fz) (5.1)

acl

for any representation u. This map is an isomorphism, see Lemma A.1.4.
Notation 5.1. We will write the inverse of (5.1) as £ — £* ® &,, so that & = £%¢,,.
For the rest of this section, we will fix a semi-simple Rep(G)-module C*-category D.

Notation 5.2. For objects x,y in D, we denote by o7 the vector space
Y = P Mor(u, ® y,z) ® H,

ael

The direct sum on the right hand side is the algebraic one. We can endow 7Y with the
P(G)-comodule structure o = @, (id ®J,), where J, is defined in Example 3.4.

Remark 5.3. The space @, Mor(u, ® y,z) ® 7, may be seen as the coend of the functor
C®? x C — Vect sending (u,v) to Mor(u ® y, ) ® 4%, see for instance [23, Section 2|, [21,
Chapter IX].

Our goal is to make the 7Y into algebraic actions for G, and the 7! into equivariant right
pre-Hilbert modules for <77

Notation 5.4. When f stands for an element in <7, its leg in Mor(u, ® y,z) (resp. in J2;,)

for a € I is denoted by f (resp. f,). Thus, the expression of the form f*® f, is understood to
represent f.

We will combine this notation with Notation 5.1. This notation can be seen as analogous to the
Sweedler notation for coproducts. As an example, consider fixed a, b € I, and elementary tensors
f=2®¢ and g = y®mn respectively in Mor(u, ®y, x) ® 7, and Mor(u, ®y, x) ® 7. Choose a
maximal family of mutually orthogonal isometric morphisms (Lgbvk)k from u, to u, ®up. Then
we have

@ (f.®92)° ® (fe ® ga)e = Ziﬂ@y@bgb,k ® (o) (E® M)

c,k
inside @, Mor(u, ® y, z) ® Mor(u, ® y, x) ® Mor(u,, u, ® up) ® J7,.

As an exercise to get acquainted with the notation, the reader could try to prove the following
interchange law

[(§*®id,)(£a ®N)T® (a®n)e = (RN ®(E®N). = @,

16



where &, are arbitrary vectors respectively in J7;, and J%;,.

Definition 5.5. Let z,y, z be objects in D. We define a multiplication map
A X A — ] (5.2)
by the formula

fg= (fg)c ® (fg)c = [fa(ida ®gb)¢a,b,z((fa ® gb)c ® idZ)] ® (fa ® gb)C'
where ¢, . is the associator from Definition 2.14.
Proposition 5.6. The multiplication (5.2) is associative.

Proof. Let (f,g,h) € @} x @7 x o/. First, the product (fg)h can be expressed as

[[fa(ida ®gb)¢a,b,z((fa ® gb)c ® 1dz)] (ldc ®hd)¢0,d,w(((fa ® gb)c ® hd>e ® 1dw)] ® ((fa ® gb)c ® hd)E’

Taking composition at ¢ and using naturality of ¢, the above is equal to

[£*(id ®¢°) (ide @ idy @7 b b Pa® b ((fo ® gy @ ha) @idy)] @ (fo ® gy @ ha)e-

Similarly, the expression f(gh) reduces to

[£*(id, ®9") (id, @ idy @A) (ide ®Ppd.00) Pab @ dwo ((fa @ G @ ha)® ®@1dw)] ® (fu ® gb @ ha)e.

The conclusion then follows from the associativity constraint on ¢. O

Proposition 5.7. Let = and y be objects in D, and let e, € Mor(u, ® y,y) be the structure
map of tensor unit included in the module package. Then the element 1, = e, ® 1 € &Y is a
right unit for the multiplication map oY x o) — ¥, and a left unit for the multiplication
map AP x A — AL

Proof. Take f € «/. Then the formula for the product f -1, reads

[f(ida ®ey ) baoy((fa @ 1) ®idy)] ® (foa ® 1)e-

Since Mor (e, u, ®u,) # 0 if and only if a = ¢ for a, c € I, the unit constraint on e reduces this
expression to f*(id, ®id,) ® f, = f. This shows that 1, is a left unit. An analogous argument
shows that 1, is also a left unit. O

It follows that we can make a category & having the same objects as D, and with morphism
space from z to y the linear space 7. In particular the ‘endomorphism spaces’ <7 are unital
algebras. It contains D as a faithful sub-*category, as shown by the following lemma.

Lemma 5.8. There is a linear functor D — A which is the identity on objects, and which
sends f € Mor(y,z) to fe, ® 1€ Y.
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Proof. This is proven in the same way as Proposition 5.7. O

In the following, we will identify Mor(y, x) with its image inside .2/¥.
Proposition 5.9. Take x,y, 2 objects in D. Let f € &Y and g€ < 7. Then

a;(fg) = af(f)ag(g).
Proof. When (FE, «) a right comodule over P(G), let us write, for z € E,
a(r) =z ®zq) € EQP(G).
Then, resorting again to the notation of Example 3.4, one has
duv(E®N) = &) @ N0y ® Emyn).-
Using that £°® 6:(&) = (£0))° ® (§(0))e ® &n), the element oZ(fg) can thus be computed as
[£*(ida ®9") Pa.z(fa ® 9)°] @ Oc((fo ® g)e)
= [£*(ide ®9") Pap,- (fa(0) ® Gb(0))] @ (fa(0) ® Gb(0))e @ Fa(1)Go(1)-
On the other hand, the way the coaction o is defined implies that
f*® fa ® fay = (f0)* ® (f0))a ® fi0)-
It follows that aZ(fg) can be expressed as
[(f0) (ida ®(9(0))") Pasz (fi))a @ (9(0))6) ] @ ((fi0))a ® (900)))e ® fry gy,
which is precisely oZ(f)az(g). O

We will now define a *-operation & — 7. Here the rigidity of Rep(G) will come into play,
so we first fix our conventions concerning duals.

Notation 5.10. When f* € Mor(u ® y,z), we write “f € Mor(y,u ® x) for its image of the
Frobenius isomorphism associated with (R,, R,) (see Lemma 2.16). So,

'f = (ida ®F") Puuy (R ®idy)ej .
Similarly, when &, € 77, we define & € 7, by the formula
u_g = (5: ® idu>Ru(1)>

where £* for a vector £ € 7 is the obvious map .77 — C.
Definition 5.11. We define the anti-linear conjugation map *: @Y — < by

=" a=(“f)*Q.f.
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Since the above formula involves both R, and R} for each a € I, the definition of * is actually
independent of the choice of the duality morphisms.

Proposition 5.12. The operation * is anti-multiplicative.
Proof. Let f € o) and g € &/;. Then by definition of the product,
(9" F)° @ (9" 1*)e = [(9)"(1da ®(f*)") a5 (((97)a ® (F*)p)° ®1da)| ® ((97)a ® (f*)p)e
= [(°9)*(1da ®("f)*) a0 (27 ®,.F)° ®1da)] ® (07 ®, f)e-

Let us concentrate first on the part ¢*; (ida ®°f)?%. Choose as solution for the conjugate

equations for b@a the couple ((id; @R, ® id,) Ry, (id, ® Ry ® idz) R,). Then, using naturality
and coherence for ¢ and e, we can write, after some diagram manipulations,

¢;,E,m<ida ®bf)a9 = (idz@é ®(fb(idb ®ga)))¢a®E,b,a®z¢&®l§®b7a,z(Rb®a ® idz)el‘-

Substituting in the expression for ¢g* f* and pulling through the factor ((¢*), ® (f*)p)¢ ® id,,
we find that ¢* f* is equal to the expression

[e:(Ryoo ®1d.)((,7 @, ) ® idpga ®id.) Pley o . Ok ag- (1de @((idy ®9™*) f**)] @ (.7 @, f )e-

Now for vectors ¢ and 7 in representation spaces, we have

[Rga((o€ ®37) ®@idy ®ida)] ® (o€ ®37)e = [R7 (id: ®((ms ® £a))*)] ® (1 ® &),
which can be verified using the natural isomorphism
S Mor(c@®b®@a,1) ® #: — H, @ H
and the conjugate equations for (R, R). It follows that ¢g* f* can be written as

[€Z<R: ® ldz)(1d5 ®((fb ® gtl)c)* ® id2>¢;®b,a,z ;,b,a®z<id5 ®<<1db ®ga*)fb*))] ® c(fb ® ga>-

Using once more coherence and naturality for ¢, this reduces to (fg)*. O

Proposition 5.13. The operation * is involutive.
Proof. Let f e oZY. By the definition of the *-operation, (f*)* can be written as

[e2(R; ®1d2) ] 50 (ida @ida @F ) (ida ®daay) (ida ® R, @ 1id, ) (id, @ey)]
® (R; ®ida)(fa ® Ra(1).

Using again naturality and coherence for ¢ and e, this can be rewritten
(f)" = [f*(1; ®id, ®id, ) (id, ®R, ® id,)] @ (R} @ ida)(fa ® Ra(1)).

But since we may replace the conjugate solution (Rg, Rg) with (R, R,), the conjugate equations
for (R,, R,) show that the above expression reduces to f. O
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Proposition 5.14. For f € o/}, we have a4(f)* = g (f*).

Proof. The coaction on f* can be written as
ey (R} ®1d,) 87 4, (1da ®F )] @ (f7 ® ua) (Ra(1) @ 1).

Since R, € Mor(u,, u, ®ug), one has

(%)23(3;)12 = (UZ)13(%)13(U&)23(RCL)12 = (UZ)ls(Ra)m-

Thus, we obtain

ay (f*) = [ey(RE ®1d,) 93 4, (ida ®F )] @ (u( fa @ 1))T3(Ra(1) @ 1) = all(f)7,
which proves the assertion. O

Lemma 5.15. There is a natural equivariant *-isomorphism

AT Y
DY ~ T T

Proof. This follows from the natural decomposition

_ ( End(z) Mor(y,x)
End(z @ y) = <Mor(:p,y) End%y) )

which passes through all further structure imposed on the o7Y. O
Lemma 5.16. We have (/%)% = Mor(y, z). Furthermore, for f € &Y, we have

(id®vpe)(ay(f)) = f*foe, € End(y).

Proof. These formulas follow from the definition of a¥ and the orthogonality of irreducible
representations. ]

Theorem 5.17. For each object y of D, the coaction of P(G) on &} defines an algebraic action
of G.

Proof. The only thing left to prove is the complete positivity (P) for the map Eg = (id ®p¢)oay.

By Lemma 5.15, it is enough to show that Eg is positive on @ for arbitrary y. Let f, g € @
Then we have

f*g = ley(R; ®idy) 9% o, (ida ®F 9" ) a0y ((f7 @ida) Ra(1) ® )" ® idl )]
® ((fa ®ida) Ra(1) ® go)c-

Applying Eg to this means taking the value at ¢ = o.
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Since u, and u, are irreducible, there exists an embedding of u, into uz; @ u, if and only if b = a.
In that case an isometric embedding is given by (dim, ua) V2R, for the normalized choice of
(R4, R,). Thus, we obtain, using the conjugate equations for (R,, R,) in the last step,

(fa ® 13)(Ra(1) ® ga) Ra

((f: @ida)Ra<1) ®ga)o((f: ®ida)Ra(1) ®ga)o = dim u
~ lar9a)

dimg u,

R,

as a morphism from wu, to u; ®u,. Hence,

_ {far9a)
dim, u,
1

dimg u,

Ee(f*g)

cey(Ry ® idy)¢;,a,y(ida ®f" ") Pa,ay(FRa ® idy)ez

' 6y<RZ & idy)¢;,a,y (id& ®<f7 g>M0r(y7y))¢Fz,a,y(Ra ® idy)627

where (f, G)mor(yy) = {fa> 9a)f** 9 is the standard Mor(y, y)-valued inner product on .27¥. From
this formula, it follows that Eg is indeed completely positive. O

Remark 5.18. In [26], the construction of an action from a module category is carried out
internally within the tensor category. There are two obstacles for attempting such a construction
in our setting. The first obstacle is a finiteness problem, in that the algebra underlying an
ergodic action will in general live inside a completion of the tensor category. This could be
taken care of by standard techniques. The second obstacle is that we want our algebras to be
endowed with a good *-structure. Now ergodic actions on finite-dimensional C*-algebras can
be characterized abstractly inside of Rep(G) as (irreducible) abstract Q-systems ([20], [22]).
However, the definition of ()-system is too restrictive if we want to allow non-finite quantum
homogeneous spaces. So although it seems manageable to lift both of the above obstacles
separately, we do not know how to tackle them in combination.

At this stage, we can apply the material developed in the previous section.

Notation 5.19. For each object y in D, we denote the G-C*-algebraic completion of &7/ (see
Proposition 4.4) by AY. We denote the block decomposition of A,g, induced by the isomorphism

of Lemma 5.15 as
ATy _ (Ai A:Z{:)
o= \ag Ay

In this way, for general z,y, the space Aj naturally has the structure of an equivariant right
Hilbert AY-module, together with a unital *-homomorphism from A7 into £,y (AY).
Lemma 5.20. When x and y are objects in D with y irreducible, then the action of G on A}

is ergodic, and AY is a finite equivariant Hilbert AY-module.

Proof. From the block decomposition as in Notation 5.19, we may as well suppose that also
z is irreducible. Then by Lemma 5.16 and Proposition 4.4, we obtain that the actions on A
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and A7 are ergodic. Since the image of A7 in £L(AY) must by construction contain K4y (AY), we
deduce from Remark 3.2 that either we have an identification Aj =~ Ky (AY), in which case AY
is in particular finitely generated projective, or else AY = 0. 0J

The AY are Banach spaces with the *-operations A% — Aj satisfying the C*-condition. It
follows that we can make a C*-category A having the same objects as D, and with morphism
space from x to y given by the Banach space Aj. By Lemma 5.8, it contains a faithful copy of
the C*-category D, which are precisely the fixed points under the G-action on the morphism
spaces.

Proposition 5.21. Let y be a fized irreducible object in D, and let AY be the category with
e objects the AY, where x ranges over the objects in D, and
e with morphism space Mor 4 (2, ) the space K1 (AY, AY).

Then we have a C*-functor F,: A — AY, sending x to AY and an element f € AZ to left
multiplication with this element. Moreover, the resulting maps Mora(z, z) — K4y(AY, AY) are
G-equivariant.

Proof. Since the modules AY are finitely generated projective over A¥, left multiplication with
elements in A? indeed gives compact operators from AY to AY. The functoriality of the given
map is then a formality to check. The equivariance follows from Proposition 5.9. O

Example 5.22. Let H be a quantum subgroup of G. We have seen in Example 2.15 that
Rep(H) is a Rep(G)-module category. When w is an irreducible unitary representation of H,
we find that

A = Mor((uq) g @ w, w) ® # = (0 Q (i) g @w)" @ H, = (B(A,) ® P(G))",

the fixed points being with respect to the w-induced left H-action on B(5%,) ® P(G). It then
follows that the action of G on C'(X,) given by Lemma 5.20 is equal to the right translation
action on the fixed point algebra (B(J,) ® C(G))!.

6 Correspondence between the constructions

Let G be a compact quantum group, and let X be a quantum homogeneous space over G. It is
known [28] that the G-algebra C(X) can be recovered from the associated ‘spectral functor’

u — Homg (77, C'(X))

on Rep(G), where the right hand side simply means the space of G-equivariant linear maps.
In general, if we ignore the problem of completion, any right comodule £ over C(G) can be
recovered from its spectral functor by the formula

@ Homg (A, &) ® H;, ~ €, (6.1)

ael
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up to completion. The algebra structure of C'(X) was recovered from the usual tensor structure
on the forgetful functor of Rep(G), and the ‘quasi-tensor’ structure on the spectral functor.

The above general scheme and our construction of G-algebra in the previous section are related
by the following simple translation.

Lemma 6.1. Let u € Rep(G), and let (€, ag) be a G-equivariant Hilbert C*-module over C'(X).
Then one has a natural isomorphism

HOmG(%, 5) =~ HOHIG’C(X) (% ® C(X), 8), (62)
where the right hand side denotes the space of linear G-equivariant, right C(X)-linear maps.

Proof. If T' € Homg (.7, ), the map £ ® x — T(&)x from 7, ® C(X) to € is G-equivariant
and right C'(X)-linear. On the other hand, the inverse correspondence is given by pulling back
with the embedding 7, — 7, ® C(X),£{ — £® 1. O

The above isomorphism can be regarded as an adjunction between the ‘scalar extension by
C(X) functor and the ‘scalar restriction’ functor (forgetting the action of C'(X)). Moreover,
C(X) itself can be regarded as an irreducible object in the category Dx by the ergodicity. Hence,
if £ is a finite equivariant Hilbert module over C'(X), we have for the right hand side of (6.2)
that

Homg c(x) (4, @ C(X), €) = Mor(u® C(X), £),

the latter a morphism space in Dx. We use here implicitly that adjointability is automatic for
C(X)-module maps between finitely generated projective modules).

In the following, we use Notation 5.19.

Proposition 6.2. Let o denote the object C(X) in Dx. Then the G-C*-algebra A? is equivari-
antly isomorphic to C(X). This isomorphism is induced by the embedding

Ay = CX), [ [f(fa®1). (6.3)

Proof. By Lemma 6.1, 27 can be identified with @, Homg (7, C'(X)) ® 47, and the map (6.3)
is identified with the canonical embedding (6.1). We obtain the assertion by comparing our
product structure on 7 with the one in [28, Theorem 8.1]. O

Proposition 6.3. Let D be a connected module C*-category over Rep(G). Let y € D be an
irreducible object, and write Ay = C(X,). Then there is an equivalence of Rep(G)-module
C*-categories D = Dy, , by restricting the functor F, from Proposition 5.21 to D.

Proof. First of all, Lemma 5.20 ensures us that [}, has the proper range on objects. Since D is
realized inside the category A by taking the G-invariants in morphism spaces, the equivariance
part of Proposition 5.21 ensures that F, also has the proper range on morphisms. In the
following, we will mean by Fj, its restriction to D.
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We next show that F), is a Rep(G)-module homomorphism. Let w be a finite-dimensional
representation of G, and let x be an object in D. Then, the spectral subspace functors associated
with A%, and u® AY are the same: the one for Allg, is, by definition, determined by the spaces
(Mor(u, ® Yy, u ® x))aer, but the Frobenius isomorphism implies that these are equal to

Mor((2@u,) ® y, x) ~ Mor(u® ug, AY) = Mor(u,, 7, ® AY)

for a € I. The resulting linear isomorphism /%, — 7, ® <Y is by construction a G-
homomorphism. It is right «//-linear and isometric by the same type of calculation as in
the previous section. The coherence conditions for Fj follow from the naturality for scalar
restriction/extension and from the fact that we can canonically take u®@v = v@u using the
chosen duality morphisms for v and wv.

It remains to show that the sets of irreducible classes are in bijection under the functor F,. By
the connectedness of D, for any object z, there exists an (irreducible) representation u of G
such that Mor(u®uy, z) # 0. Hence AY is a non-zero Hilbert module. As in the proof of Lemma
5.20, it follows that AY is irreducible if z is irreducible. If further x and z are irreducible, we
must have by the same reasoning that the map

AT AN [ OK(AY)  K(AYAY)
A oaz) 7 \K(an Ay KAy

is an isomorphism. Using Lemma 5.16, we see that if x and z are non-isomorphic irreducible
objects, AY and AY are not equivalent in Dy, .

Now, any object in Dy, is a subobject of u@® C(X,) for some finite-dimensional representation
u of G. As F), preserves the module structure, and as C(X,) is the image of y by construction,
we find that any object of Dx, is isomorphic to an object in the image of F,. By Lemma 2.6,
we conclude that F), is an equivalence of Rep(G)-module C*-categories. O

To conclude this section, we summarize our main result in the following theorem, which will
also include the formalism on bi-graded Hilbert spaces developed in the Appendix. Indeed,
in our setup, abstract module C*-categories will arise naturally from the study of quantum
homogeneous spaces, and one then passes to the bi-graded Hilbert space picture to reveal the
combinatorial structure in a more tangible form, cf. the remark after Theorem 1.5 in [14]. This
will be exploited in our forthcoming paper [8] to classify the ergodic actions of the quantum
SU,(2) groups for 0 < |¢| < 1.

Theorem 6.4. Let G be a compact quantum group. There is a one-to-one correspondence
between the following notions.

1. Ergodic actions of G (modulo equivariant Morita equivalence).
2. Connected module C*-categories over Rep(G) (modulo module equivalence).

3. Connected strong tensor functors from Rep(G) into bi-graded Hilbert spaces (modulo nat-
ural tensor equivalence).
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The connectedness of a strong tensor functor F' into J-bi-graded Hilbert spaces means that it
can can not be decomposed as a direct sum F; @ Fy with the F; strong tensor functors into
Ji-bi-graded Hilbert spaces, J = J; u Jy with J; and J5 disjoint.

Proof. The equivalence between the first two structures is a direct consequence of Proposi-
tions 6.2 and 6.3, where the arbitrariness of the choice of irreducible object corresponds pre-
cisely to equivariant Morita equivalence, cf. the remark above Notation 3.8. The equivalence
between the last two is a consequence of Proposition A.4.2, under which the connectedness can
be easily seen to be preserved. O

Let us give a little more detail on the direct correspondence between tensor functors and ergodic
actions. Let J be a set, and (F,s), ses be a connected strong tensor functor from Rep(G) into
column-finite J-bi-graded Hilbert spaces. Then by Proposition A.4.2, H{ has a structure of
Rep(G)-module C*-category, in such a way that F,.s(u) =~ Mor(x,,u ® xs). Hence for r, s
elements of .J, the spaces 27> which were constructed in Section 5 can be explicitly expressed
as
%mrs = @ Frs(a') X %a
ael

since we can identify Mor(u ® x4, x,) with the conjugate Hilbert space of Mor(x,,u ® x) by
means of the adjoint map.

7 Categorical description of equivariant maps

In this last section, we investigate the relationship between equivariant maps between quantum
homogeneous spaces and equivariant functors between module C*-categories.

Let X and Y be quantum homogeneous spaces over G, respectively given by the coactions
a: CX) - CX)®C(G) and 5: C(Y) - C(Y)®C(G). A G-morphism from Y to X is repre-
sented by a unital *-algebra homomorphism 6 from C'(X) to C'(Y) satisfying the G-equivariance
condition (A ®id) o = o 6.

Given such a homomorphism 6, we obtain a *-preserving functor 4: Dx — Dy defined as

the extension of scalars £ — &£ ®c(x) 4C(Y). We may assume that this functor maps the
distinguished object C(X) of Dx to the one of Dy, namely C(Y). When u € Rep(G) and
& € Dx, let 1y denote the isomorphism

(. ®E) Rorx) C(Y) = H,® (E®cx) C(Y)), (®z)®y—E{®(zQy).

Then 1y can be considered as a natural unitary transformation ¢p: 0u(—® —) - — ® (f2—)
between functors from Rep(G) x Dx to Dy. This 1)y enables one to complete 64 to a module
C*-category homomorphism between Dx and Dy, cf. Definition 2.17.

We aim to characterize the G-equivariant morphisms of quantum homogeneous spaces in terms
of their associated categories and functors between them.
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Theorem 7.1. Let X and Y be quantum homogeneous spaces over G. Let (G,1)) be a Rep(G)-
module homomorphism from Dx to Dy satisfying G(C(X)) = C(Y). Then there exists a G-
equivariant *-homomorphism 6 from C(X) to C(Y) such that 04 is naturally isomorphic to
G.

Furthermore, two Rep(G)-module homomorphisms (G, 1) and (G,v') with the same underlying
functor give rise to the same homomorphism 0 if and only if 1 and v’ are conjugate by a unitary
self-equivalence of G.

Proof. By Proposition 6.2, we know that C'(X) can be identified with a completion of the space
& = @ger Mor (7, ® C(X), C(X)) ® s, and similarly for C(Y) as a completion of the space
PB = @qer Mor (7, ® C(Y),C(Y)). For any u € Rep(G), the action of G and ¢} - induces a
linear map

T Mor (M, ® O(X),E) — Mor (#, ® C(Y),GE),
sending f to G(f) o When & = C(X), we write gl _ v, and we put 0 = @V, ®id,
as a map from & to A.

We first want to show that this is an algebra homomorphism. Let f and g be elements of <7.
The effect of 6 on fg can be expressed, using the notation from Definition 5.5, as

(0(f9))° ® (0(f9))e = [G (F*(ida ®9")((fa ® %) ® idc())) Vi c] ® (fa @ g)e (7.1)

where we have dropped the associativity constraint for the module category since the latter is
concrete.

By functoriality of GG, naturality of 1) and coherence of 1, the morphism part in the left leg of
the above formula can be written as

G(f )% o0 (ida RG(g°)) (ide @1y 50 ) (fa @ 9)° @ id ),

which can be simplified to ¥, (f*)(id, ®P4(g°))((f2 ® g5)° ®idc(yy). Since we can write 0(f) =
U, (f*) ® fa, we conclude that indeed 0(fg) = 0(f)0(g). In the same way, the unitality of 6 is

proven.

Next, let us observe that 6 is compatible with the involution on both algebras. This is a
consequence of the facts that G ‘commutes’ with the morphisms in R and intertwines the *-
operations on Dx and Dy, and of naturality of v). Since 6 is equivariant by construction, it then
follows from Proposition 4.5 that 6 can be extended uniquely to an equivariant *~homomorphism
from C'(X) to C(Y), which we denote by the same symbol.

Finally, we have to prove that 64 and G are equivalent. Let £ be an object of Dx, and write
e = @uer Mor(u, ® C(X), E) ® H,, which we know can be identified with a dense subset of
£. Similar notation will be used for #. Then for f € @/ and g € %, we can define an element

ne(ﬂ 9) in XBae by

ne(f,9) = Ve (/) (fa®9)
=[5 (f")(ida ®9") ((fa ® 3)° @ idew))] @ (fo ® o).
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This will give a linear map ne from the algebraic tensor product @ ® Z to Bae. By construc-
tion, it extends to the canonical isomorphism 0,C(X) ~ C(Y) = GC(X) at the object C(X).
Using Rep(G)-equivariance, it then follows that ng also extends to a unitary from 64(€) to
G(E) for & of the form u® C(X) for some representation u of G. By the connectedness of Dx
and linearity, we deduce that this holds for arbitrary £. Hence ng induces a natural unitary
transformation n: 0, — GE.

The way in which n is constructed shows that the canonical vy is interchanged with ¢, i.e.

(id®ne) o (Vo)ue = Yug © Nuge-
Indeed, taking € J7,, f € o/ and g € C(Y), we have that

Nee(E® f)®g) = G((E® )V cm(E® fa®9).
On the other hand,

Vo e((d@ne) (R (f® 7)) = Uy e[ R G(f)Vr i) (fe ® g)]
= G(idu ®f) V5 cem) (L @Vl o)) (E® fe® g)
G(idy ®f)ngecx (£®fc®g>
G(id, ®f€)iby, u®c,C (X ((£®f0> (E®f)a®9)
G((d, ®f)((E® fo)* ®ide)) Vi o (E® fo)a ® 9),

which then reduces to the expression above.

It follows that if we have a different 1)’ which leads to the same #, we can construct by means
of the two n-maps for ¢) and ¢’ a unitary self-equivalence of G which conjugates 1 and ).
Conversely, if p is a natural unitary equivalence from G to itself, the p-conjugated natural
transformation

P = (idy Qo) ) Viuecr): Glu® C(X)) - u® C(Y)
gives the same map Mor(u®C(X), C'(X)) - Mor(u®C(Y), C(Y)) as the one induced by ¢». O

Example 7.2. Let K < H be an inclusion of quantum subgroups of G. Then, the restriction
functor Rep(H) — Rep(K) is a Rep(G)-module homomorphism, and maps the trivial represen-

tation of H to the one of K. The induced G-equivariant homomorphism C(H\G) — C(K\G)
is the canonical inclusion of fixed point subalgebras for the respective left translation actions.

We now want to interpret Theorem 7.1 in the context of bi-graded Hilbert spaces. We keep X
and Y fixed quantum homogeneous spaces for G. In the following, we let J (resp. J') be an index
set of the irreducible objects in Dx (resp. Dy). We denote the index corresponding to C'(X)
(resp. C(Y)) by e (resp. *). The J x J-graded (resp. J’ x J'-graded) Hilbert space associated
with the action of u € C on Dx (resp. Dy) is denoted by (F5(u))pses (resp. (F)(v))pges), and
the corresponding unitaries by

(ﬁrs,u,v: Frs(u ® U) - @)tFrt(u) ® Es (U)
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Then if 0: C'(X) — C(Y) is an equivariant *-homomorphism, we have the J’ x J-graded Hilbert
space @, Fp, associated with 6, where F,, = Mor(z,,0xx,)) for pe J',r e J, cf. Section A.2.

From Theorem 7.1, we then obtain the following corollary.

Corollary 7.3. Let X and Y be quantum homogeneous spaces for G. The equivariant homo-
morphism from C(X) to C(Y) are in one-to-one correspondence with the classes of families of
Hilbert spaces F., pe J" and r € J, and unitary maps

;;r: @Fps@Fﬁ(u) - @FIE(U)(@FW
seJ qeJ’
for u e Rep(G), r € J, and p € J', such that 1) . is 0,, times the identity, F,. = 0px, the
diagrams
Ypr

DsFps ® Fs}f,(u) G‘)ngg(u) ® Fyr
®sid ®F§T(T)l J/Cﬁngq (T)®id
DsLps @ Fs%(“) o @ng;(U) ® For

are commutative for any T € Mor(u,v), and

Dyt Fpq (1) ® Fyp @ F(v)

st Fps @ Fiy (1) ® Fip(v) Dy g (1) ® Foly (v) @ Fy
®S idPS ®¢§r,u,vl ®w¢gw,u,vl
@sts®F§«(u®U) o @wFZEYU,(u@U)@FwT

18 commutative.

Here two families (Fy, ;) and (G, piy;) belong to the same class if and only if there are
unitaries U,s: F,, — G, such that

(@)w(idqw ®Uw5))¢gt = MZt(@s(qu X idst))
forallge J', t € J and u € Rep(G).

In practice, one only needs to verify the above assumptions for all irreducible « (in which case
the naturality condition simplifies), or for tensor products of a ®-generating object (in which
case the constraint condition simplifies). Moreover, the fact that the above Hilbert spaces are
often one-dimensional in special cases makes the problem of determining the possible 1 more
tractable.

Important invariants of (X, Y, #) are the families of integer-valued matrices (dim F%(ug)),s and
(dim F})) (ta))pg for a € I, and (dim(F},)),.. These are multiplicity matrices as considered in [35]
and [31] (see Remark 3.12).
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Let us examine them more closely in the particular case when the larger algebra C(Y) is of
full quantum multiplicity [6, 9]. This is the case if and only if Dy is based on a singleton {y}.
Thus, the functor 64 : Dx — Dy itself can be classified among the C*-functors by the dimension
of the vector spaces F, = Mor(0x(x,),y) for r € J. The next result is useful in determining
the coideals inside the full quantum multiplicity ones even when there is no trace, c.f. [31,
Corollary 4.21].

Proposition 7.4. Let X and Y be quantum homogeneous spaces over G. Assume that C(Y) is
of full quantum multiplicity, and that there is a G-equivariant homomorphism 6 from C(X) to
C(Y). Then, for any u € Rep(G), the matriz (dim F2(u)),ses has an integer-valued eigenvector
for the eigenvalue dim F¥ (u).

Proof. The vector (dim F,.),c; satisfies

> dim F, dim F}5(u) = dim Mor (04 (u ® z,), C(Y))
reJ

= dim Mor(u ® 042, C(Y)) = dim F¥(u) dim(F})

for any s € J (the above sum makes sense because (F=(u)), s is banded). Hence it is an

eigenvector of the eigenvalue dim F'¥(u). O

Appendix. Concrete C’-categories

In this appendix, we pick up the discussion which we started in Section 2. It is, essentially, an
elaborate write-out of the remark appearing in the proof of Theorem 2.5 of [11].

A.1 Concrete semi-simple C'-categories

As we will show in Lemma A.1.6, there is essentially only one semi-simple C*-category based on
a given set J. This can easily be shown by using Lemma 2.6, but we would like to have a more
concrete formula for the inverse of such an equivalence functor. To accomplish this, we first
establish some preliminaries results. The first goal is to generalize the direct sum construction
in the setting of C*-categories.

Definition A.1.1. Let D be a C*-category. Let X be an object of D, and 7 a finite-
dimensional Hilbert space. An JZ-amplification of X is an object Z ® X together with a
linear map 65 : 7 — Mor(X, # ® X) such that

1. For all £, ne 2, we have 0 (£)*0% (n) = (&, n)idy.
2. If & is an orthonormal basis of JZ, then Y. 6 (&)0% (&)* = idrex.
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Note that, if 77 = 0, the second condition above implies that the Z-amplification is a zero
object. Similarly, if 57 = C, the JZ-amplification is equivalent to the identity functor.

Lemma A.1.2. Let D be a C*-category admitting finite direct sums, and  a Hilbert space
of finite dimension. Then any object of D admits an F€-amplification. The ensuing operation
Hs x D — D can be extended to an Hs-module C*-category structure on D.

We recall that Hy is the category of finite-dimensional Hilbert spaces.

Proof. Choose a fixed orthonormal basis (e;)!; for each .. For an object X € D, define
S @ X as the direct sum @] ;X of n copies of X. With v; denoting the i-th isometric
injection X — @;X, the 0 (&) = X..{e;, E)v; are easily seen to satisfy the conditions for an
J¢-amplification. The resulting construction is obviously functorial in X. If x is an operator
H — K, we choose an orthonormal basis (f;); for " and define r ® idy to be the operator
0L (2 f)0 (fi)* from # @ X to # ® X. Again, this is clearly independent of the chosen
basis for s, and will give functoriality on the J#-component. Finally, the associator for the
module structure can be made as follows: given Hilbert spaces 77" and # with respective bases

(f:) and (g;), we define

S x = 2. 00ex (10X (9027 (fi ® g;)*
ij

as a morphism (' Q@ ¥ )X — H ® (H ®X). O
As a consequence of the Hymodule structure, we obtain a natural isomorphism

Mor(# @ X, # ®Y) ~ # ® # @ Mor(X,Y).
In the presentation of the right hand side, composition of morphisms involves the concatenation

of the form ¢ ® # — C ‘in the middle’ by means of the inner product.

Notation A.1.3. Let D be a semi-simple C*-category based on the set J. Let r € J and
X € D. We denote by X (r) the Hilbert space Mor(X,, X).

Lemma A.1.4. Let D be a semi-simple C*-category based on an index set J. Then there is a

natural unitary equivalence X — @,c; X (r) ® X, for X € D.

Proof. Let Y be another object of D. Considering the central support of range projections for
morphisms in Mor(Y, X), we see that the map

@ Mor(X,, X) ® Mor(Y, X,) — Mor(Y, X)

reJ

induced by composition of morphisms is an isomorphism. The left hand side of the above is,
by definition of the amplification, canonically isomorphic to Mor (Y, ®,; X (1) ® X,). By the
Yoneda lemma, we obtain the assertion. O
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The next definition provides the canonical semi-simple C*-category with which we will want to
compare an arbitrary one.

Definition A.1.5. Let J be a set. A J-graded Hilbert space is a Hilbert space 7 endowed
with a direct sum decomposition J# = @,c;7 (the right hand side should be understood as
the Hilbert space direct sum). They form a C*-category H’ by considering as morphisms the
grading-preserving operators,

Mor (A, %) ={T € B(J, %) |Vre J: T(H) < K%}
= {(T)es e [[BOK ) | sup T < 0.

reJ

The full subcategory of J-graded finite-dimensional Hilbert spaces is denoted H .

The category H{ then forms a semi-simple C*-category, based on the set J in a natural way.
Namely, an irreducible object for the label r € J is given by the graded Hilbert space C, which
has C as component at place r and 0 at the other places.

Lemma A.1.6. Let D be a semi-simple C*-category based on a set J. Then the categories D
and 7—[}] are unitarily equivalent, an adjoint pair of equivalences being given by

X —>@PX(r), H o~ P AR X,,

reJ reJ

where F¢, denotes the r-th component of .

Proof. An equivalence between D and H{ can be established by using Lemma A.1.4 and Defi-
nition A.1.1 to define invertible unit and co-unit maps for the stated functors. O

A.2 Functors and natural transformations

The goal of this section is to give an equally concrete description of functors between semi-simple
C*-categories, and natural transformations between them.

Let J and J' be index sets. Let 5 = @y e, be a Hilbert space endowed with a direct
sum decomposition over the set J' x J. We also assume that 7 is column-finite in the sense
that >} dim(77,) is finite for all 7. In particular all 7, are finite-dimensional. Then one has

a functor ' from H{ to H{" given by (F* ), = ®,#,, ® #, on objects, and (F*(T)), =
@y idy,, ®T, on morphisms.
If J” is another index set and 7" is a column-finite .J” x J'-graded Hilbert space, the composition

of functors F”*" and F” is given by F'*, where the J” x J-graded Hilbert space ¢ is given
by the [*(J')-balanced tensor product

(A X)) H)w = P(H,,Q5,) (vel' reld)

10(J") pe’
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Let D (resp. D') be a semi-simple C*-category based on an index set J (reps. J'), with a
system of irreducible objects (X, ),es (resp. (Yp)pes). The next proposition shows that any
functor between abstract semi-simple C*-categories is induced by a column-finite J’ x J-graded
Hilbert space as above.

Proposition A.2.1. Let F' be a C*-functor from D to D'. Up to the unitary equivalence of
Lemma A.1.6, F is naturally equivalent to the functor induced by the J' x J-graded Hilbert
space Y whose (p,r)-th component is Mor (Y, F(X,)).

Proof. First of all, the graded Hilbert space @, Mor(Y,, F'(X,)) is indeed column-finite, as the
F(X,) splits into a finite number of irreducible objects.

A natural equivalence as in the statement of the proposition must then be given by unitary
maps

p: DAy @ X(r) — (FX)(p)

reJ

for p e J'. On the direct summand at r, we define ¢, as the map
Mor (Y, F(X,)) ® Mor(X,, X) s f®g+— F(g) o f € Mor(Y,, FX).

Then the resulting map is indeed unitary by the semi-simplicity of D. The compatibility with
the morphisms in D is apparent from the above definition of ¢,. O

Suppose we are given two J' x J-graded Hilbert spaces 2 and %, and an operator T €
B(A, ) which respects the grading. Then, we obtain a natural transformation 57 of F/
into " by the formula

=P, ®id g F7 (M), > F" (M),

red

because the norm of this operator is uniformly bounded by ||T"|. Thus, we obtain a morphism
from F” to ¥ in the category Fun(H{, H{') (see Remark 2.2).

Conversely, let F' and G be functors from D to D', and n be a natural transformation of
uniformly bounded norm from F' to GG. Then the induced maps

T3+ Mor(Yy, FI(X,)) — Mor(Y,, G(X,)), f—nx,of

has a norm bounded from above by ||n|. Now, from the way F and 2#% is identified in
Proposition A.2.1, one sees that the above correspondences T+ n’ and 1+ T" are inverse to
each other. We record this for reference in the following proposition.

Proposition A.2.2. Let F' and G be functors from D to D'. Then morphisms from F to G in
Fun(D,D’) can be naturally identified with grading preserving bounded operators from Y to
HE.
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A.3 Concrete semi-simple tensor C’-categories

We next apply the above constructions to the endomorphism tensor category End(D); associ-
ated with a semi-simple C*-category D.

Notation A.3.1. Let J be an index set, and denote by £/ the C*-category of column-finite
J x J-graded Hilbert spaces J# = ®, scj.7,s. As morphisms, we take the bounded operators
v: S — & which preserve the grading.

By the results of Section A.2, we can identify £ with the tensor C*-category of C*-endofunctors
on H{. Thus, the tensor product, is given by the (“(J)-balanced tensor product, and the unit
object 1, is given by (*(J) with the diagonal J x J-grading (1;)s = d,C.

Lemma A.3.2. The mazimal rigid subcategory Ef of €7 has as its objects those A which
satisfy the condition

sup Y (dim(J4,) + dim(.,)) < .
In particular, all 7, are finite-dimensional, and only a finite number of ., are non-zero on
each ‘row” and ‘column’, i.e. the grading is banded. The dual d(F) of A can then be given
by d(H),s = Hp = FC5 with duality morphisms

Ry: B()) > @ Hu® oy, 8> 367 @E

r,seJ i
Roy: B(J) > @ Ha®@ He, b Y. €7 @67,
r,seJ 5,

where the 52-(“) form an orthogonal basis of H.s.

Proof. The restriction on the dimensions of the J#, ensures that both operators R, and R
are bounded. It is then straightforward to check that they satisfy the snake identities for a
duality.

Conversely, suppose that ®,,.5,, admits a dual ®,,%,, by means of duality morphisms (R, R).
Then the latter decompose into maps

RT’S:C_)gTS@%TW RT’S:C_)%’S@gST"

Let us write

Trs(§) = (7 ®@1d)(Rys(1)) € Ay, Lrs(n) = (" ®1id)(frs(1)) € G

for £ € 9., and n € ;. Then J,, gives an anti-linear map from ¥, to ¢, and Z,., from 2,
to Y. The snake identities (2.1) imply that Z,., is the inverse of J,.

By the boundedness of R and R, we obtain that sup, Y Tr(J%7,s) = |R|?, and similarly
sup, >, Tr(Z}Z.s) = |R|?. Since Z,, = J", the trace property allows us to rewrite the latter
equality as sup, 3, Tr((J5J:s) ") = | R[*.
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Suppose now that that the condition sup, > (dim(74,) +dim(7%,)) < o0 is not satisfied. Then
by symmetry we may assume that there exists a sequence 7, such that >, dim(.77, ;) = n. This
implies that we can also find s, and a strictly positive eigenvalue A\ of jr”:hsﬂj%sn such that

A < @. But as A~! < | R|?, this gives a contradiction. O
We now show that if D is a semi-simple C*-category based on an index set .J, then End(D); is
tensor equivalent with &/.

Proposition A.3.3. Let D be a semi-simple C*-category, based on an index set J. Then the
categories End(D); and EJ;] are tensor equivalent, by means of the associations

F @ Mox(X,, F(X,), Hoo X > @ A0X(5) B X,

(r,s)edxJ r,s€J

Proof. We have already remarked that there are mutually inverse tensor equivalences End(D) <
E7. Since equivalences preserve duality, they restrict to equivalences between End(D); and
&l O

A.4 Module C’-categories and bi-graded tensor functors

This section essentially establishes that also in the categorical set-up, there is an equivalence
between modules and representations. Combined with the material of the previous sections, it
allows one to present a concrete and workable version of a semi-simple module C*-category.

Lemma A.4.1. Let C be a tensor C*-category, and D a C*-category. Then there is an
equivalence between C-module C*-category structures M on D and strong tensor C*-functors
F:C — End(D).

Proof. For module structures M and tensor functors F', we have the associations
Mo [Fy: U o> M(U,-)], F s [Mp: (U, X) > FU)(X)],

mapping all other structural morphisms in the obvious ways. These maps are clearly inverses
to each other. 0J

We can now state the following useful result.

Proposition A.4.2. Let C be a tensor C*-category, and let J be a set. Then there is an
equivalence between

1. module C*-structures on J-based semi-simple C*-categories, and

2. strong tensor C*-functors C — Ef.

34



Given a module C*-category (D, M, ¢, e), the corresponding tensor functor C — EJ;] s given by

F: U - @ Mor(X,, M(U, X,)).

T8

Writing the right hand side above as ®, sF,s(U), the coherence maps for tensoriality are encoded
as isometries

Fs(U)@Fu(V) = F(U®V), f®g— ¢pyx, o (du®g)o f, (A.4.1)

Proof. By Lemma A.4.1 and Lemma 2.13, a C-module C*-category structure on a semi-simple
C*-category D based on J is equivalent to giving a strong tensor C*-functor from C to End(D);.
Composing with the tensor equivalence from Proposition A.3.3, we obtain the correspondence
stated in the proposition. O
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